首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two dense meadows of the seagrass Thalassodendron ciliatum (Forssk.) den Hartog were sampled during the Indonesian—Dutch Snellius II expedition to Eastern Indonesia. Production data were obtained from one of these meadows. The production of leaf biomass was measured by the leaf marking technique of Zieman and by the plastochrone interval method. The two methods reached comparable results. The production of leaf tissue was 4.2 mg ADW shoot?1 day?1. The production of rhizome biomass was calculated in a similar way, based on the plastochrone interval of rhizome nodes. The production of the meadow, exclusive of the production of roots and fruits, amounted to 4.5 g ADW m?2 day?1. A significant correlation between the growth rates of rhizomes and leaves was observed. Biomass data from the second site are given.  相似文献   

2.
《Aquatic Botany》1987,27(4):333-362
Biomass and production data of the seagrasses Cymodocea serrulata (R. Brown) Aschers. and Magnus, Cymodocea rotundata Ehrenb. et Hempr. ex Aschers., Halodule uninervis (Forssk.) Aschers. and Syringodium iksoetifolium (aschers.) Dandy were collectede in monospecific stands in Bootless Inlet, Papua New Guinea. Cymodocea serrulata and Cymodocea rotundata were studied from November 1980 to November 1981. Total annual mean biomass was 354 and 201 g ADW m−2, respectively. The largest proportion of these biomass values was contributed by the rhizomes (49 and 36%, respectively) and leaf biomass was ± 30% for both species. Halodule uninervis was studied at an intertidal and a subtidal site. The highest total annual mean biomass (600 g ADW m−2) was recorded at the intertidal site, of which 85% was found below ground. The largest proportion of the biomass, at both sites, was contributed by the below-ground vertical axes of the shoots. The biomass of the rhizomes was relatively low (9–12%) for Halodule uninervis. Proportionally, the largest above-ground biomass (40%) was recorded for Syringodium isoetifolium, of which the annual mean biomass was 481 g ADW m−2.Total production (above and below ground) was 4.9 and 3.0 g ADW m−2 day−1 for Cymodocea serrulata and Cymodocea rotundata, respectively. Approximately 70% was production of leaves. Total production amounted to 6.0 and 4.0 g ADW m−2 day−1 for Halodule uninervis at the intertidal and subtidal sites, respectively. The maximum production was recorded for Syringodium isoetifolium, 60% of the 9.0 g ADW m−2 day−1 was contributed by the leaves. All species reached the maximum production during February and March, when the water temperatures were highest and water was retained above all sites, at all times. The increase of leaf production was mainly due to the increase in biomass of the mature leaves. Significant changes in the plastochrone interval of the leaves were not observed during this period.  相似文献   

3.
《Aquatic Botany》1987,27(4):363-383
During 1982, structural and functional aspects of the epiphytic component in a tropical mixed seagrass meadow, have been investigated for each seagrass species separately. This meadow consisted of the seagrasses Thalassia hemprichii (Ehrenb.) Aschers., Cymodocea serrulata (R.Br.) Aschers. et Magnus, C. rotundata Ehrenb. et Hempr. ex Aschers., Halodule uninervis (Forssk.) Aschers. and Syringodium isoetifolium (Aschers.) Dandy.No significant differences were observed in floristic composition, number of algal species, abundance and diversity of the epiphytic component. On an area basis, annual mean above-ground biomass (seagrass leaves and epiphytes), amounted to 82 g ADW, of which 18% could be ascribed to the epiphytic component. The contribution of the epiphytic component to the annual mean above-ground production ranged from 16% on leaves of Thalassia hemprichii to 33% on leaves of Cymodocea serrulata. Total annual mean epiphyte production was 4.6 g ADW m−2 sediment surface day−1 (19%).When including the macroalgal component of this mixed seagrass meadow, total annual mean above-ground plant biomass amounted to 93 g ADW (212 g DW) on an area basis, of which the epiphytes contributed 15.5% (28.5% DW), the macroalgal component 12% (32.5% DW) and the seagrass leaves 72.5% (39.5% DW). Aspects of the epiphytic component (e.g., floristic composition, abundance, biomass and production) in monospecific and mixed seagrass communities are discussed.  相似文献   

4.
The epiphytic component of four monospecific seagrass beds from Papua New Guinea was studied structurally and functionally. The floristic composition and abundance of the epiphytes on leaves of four seagrass species (Cymodoceoideae) showed considerable variation, but on all four seagrass species, the same algae were among the five quantitatively most important epiphytes: encrusting coralline algae, Cyanophyta, Ceramium gracillimum (Harv.) Mazoyer, Polysiphonia savatierii Hariot and Audouinella spp. The temporal pattern of the epiphytic algae showed more or less the same features on the four seagrass species.Annual mean biomass of epiphytes and seagrass leaves ranged from 54 g ADW m?2 in a community of Cymodocea rotundata Ehrenb. and Hempr. ex Aschers. to 169 g ADW m?2 in a community of Syringodium isoetifolium (Aschers.) Dandy. The contribution of the epiphytic component to the total above-ground biomass ranged from 22 to 24%. Productivity of epiphytes was highest on leaves of Halodule uninervis (Forssk.) Aschers. (2.12 g ADW m?2 sediment surface day?1) and the epiphytic community contributed 35–44% of the total above-ground production of these four seagrass communities.  相似文献   

5.
《Aquatic Botany》1987,29(1):33-47
Aspects of production and biomass were studied from November 1981 to November 1982 in six seagrass species which together from the mixed seagrass meadows in Papua New Guinea. These species, viz. Thalassia hemprichi (Ehrenb.) Aschers., Cymodocea serrulata (R.Br.) Aschers. et Magnus, Cymodocea rotundata Ehrenb. et Hempr. ex Aschers., Syringodium isoetifolium (Aschers.) Dandy, Halodule uninervis (Forssk.) Aschers. and Halophila ovalis (R.Br.) Hook. f. have been previously studied in monospecific seagrass beds. Thalassia hemprichii was the dominant species, followed by Syringodium isoetifolium. These two species were present in all samples and evenly distributed. Cymodocea serrulata and C. rotundata were recorded in 91 and 86%, respectively, of the quadrats sampled. The density, however, varied considerably. Shoots of the remaining two species were found in < 50% of the samples. The percentage presence increased when below-ground plant parts were taken into account.Significant differences in the shoot density were only found in Syringodium isoetifolium. The distribution of the five other species remained unchanged during the year. Annual mean shoot density amounted to 860 for Thalassia hemprichii, 2100 for Syringodium isoetifolium, 200 for Cymodocea serrulata, 250 for C. rotundata and 54 for both Halodule uninervis and Halophila ovalis. All species reached their maximum density from September to November. The mean aboveground production was 3.9 g ash-free dry weight (ADW) m−2 day−1, of which 64% was contributed by Thalassia hemprichii. Syringodium isoetifolium, which had the highest shoot density, contributed only 17%.The plastochrone interval of the leaves (PIL) was constant in all species and the mean ranged from 10.1 to 11.1 days. The PIL was virtually the same in this mixed meadows as in monospecific seagrass beds. Furthermore, the above-ground relative growth rate was constant during the year. Thalassia hemprichii was the most productive seagrass (mean 0.043 day−1), whereas the lowest mean relative production was observed for Syringodium isoetifolium (0.030 day−1). Total mean production was 6.4 g ADW m−2 day−1, of which 39% was contributed by the vertical axes, the rhizomes and the roots. The caloric production efficiency of the meadows was 0.58% of the total insolation at the water surface.Thalassia hemprichii was, because of its morphology, the stable element in the meadow. All other species were present at all times and exhibited a continuative process of recolonization.  相似文献   

6.
Bandeira  Salomão O. 《Plant Ecology》1997,130(2):133-141
Dynamic and structural aspects of Thalassodendron ciliatum were studied in the intertidal zones around Inhaca Island during the rainy seasons 1991 to 1993. Measurements comprised leaf growth rate, leaf detachment rate, biomass, above-ground to below-ground biomass ratios and total rhizome length. On average, three leaves were, at the same time, formed and detached from a shoot during 15 day periods and five leaves from a shoot during 30 day periods. Mean leaf growth rate varied from 101.2 to 159.5 mm, 313.2 to 366.9 mm and 540 to 583.0 mm for 15, 30 and 45 days of measurements respectively. Differences between locations (Banco Sidzanye, Barreira Vermelha and Portinho-EBM/BV) were not statistically significant for the 30 and the 45 day period, but significant for the 15-day period. The average leaf growth rate per day was between 14.1 to 18.3 mm day-1 shoot-1, and the average time for leaf turnover (6 to 9 leaves) on one shoot was four successive spring tides (around 45 days). The average above-ground to below-ground biomass ratio was 1: 1.5 (61% in below-ground biomass) and leaf biomass varied between 45.1 and 211.7 g DW m-2. Total rhizome length varied between 960.0 to 6641.6 cm m-2. A positive correlation was observed between this variable with rhizomes and roots and between rhizomes and roots.  相似文献   

7.
《Aquatic Botany》1986,23(4):351-360
A functional growth model was developed for Halophila hawaiiana Doty and Stone, based on its regular plastochrone interval, and the relationship between leaf area and plant biomass. The model allows estimates of biomass, productivity and turnover from easily collected field samples. From these samples, the number of actively growing apical buds, total leaf number and total leaf area for a unit area were determined. This model was applied to a meadow in Kaneohe Bay, Oahu. The mean biomass was 104.25 g dry wt. m−2 and the productivity 7.11 g dry wt. m−2 day−1. The turnover time was 14.7 days.  相似文献   

8.
1. We estimated the biomass and production of juvenile anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) (parr) in 12 streams in the Skagerrak area of Norway to identify controlling environmental factors, such as land‐use and water chemistry. 2. Production estimates correlated positively with fish density in early summer, but not with the size of the catchment. The summer biomass of age‐0 brown trout and Atlantic salmon was smaller than that of age‐1 and constituted 27.4 and 25.7%, respectively, of the total biomass of the two groups. 3. Mean production of brown trout from July to September varied between streams, but in most cases it was below 2 g 100 m?2 day?1. Yearly cohort production from age‐0 in July to age‐1 in July was 10 g m?2 or less, with mean annual production of 1.32 g 100 m?2 day?1, equivalent to 4.8 g m?2 year?1. The corresponding annual cohort production of Atlantic salmon was 0.38 g 100 m?2 day?1 or 1.4 g m?2 year?1. Annual production to biomass ratio (P/B) for brown trout of the same cohort in the various streams was between 1.47 and 4.37; the overall mean (±SD) for all streams was 2.25 ± 0.94. Mean turnover rate of Atlantic salmon was 2.73 ± 0.24. 4. Production of 0+ brown trout during the summer correlated significantly with the percentage of agricultural land and forest/bogs in the catchment, with maxima at 20 and 75%, respectively. Age‐0 brown trout production also correlated with concentration of nitrogen and calcium in the water, with maxima at 2.4 and 14 mg L?1, respectively. 5. The results support the hypothesis that brown trout parr production reflects the quality of their habitat, as indicated by the dome‐shaped relationship between percentage of agricultural land and the concentration of nitrogen and calcium in the water.  相似文献   

9.
Standing crop, density and leaf growth rate of Heterozostera tasmanica (Martens ex Aschers.) den Hartog along with light, temperature, nutrient and sediment characteristics were determined monthly for fifteen months at three study sites in Western Port and one site in Port Phillip Bay, Victoria, Australia. Erect vegetative stems of H. tasmanica were frequently branched, were present throughout the year and accounted for 25–60% of the above-sediment biomass, with the stem proportion higher during winter than summer. At three of the four sites there was a unimodal seasonal pattern in which minimum leaf standing crop (27–61 g dry wt. m?2), density (600–2000 leaf cluster m?2) and leaf productivity (0.34–0.77 g dry wt. m?2 day?1) generally occurred during winter (June–August) and maximum leaf standing crop (105–173 g dry wt. m?2), density (2700–5000 leaf cluster m?2) and leaf productivity (2.6–4.2 g dry wt. m?2 day?1) occurred during summer (December–February). A bimodal seasonal pattern with minimum standing crop and density during midsummer occurred at one site. This anomalous seasonal pattern may be due to exposure and desiccation stress during spring low tides. At the site receiving the lowest irradiance, standing crop, density and annual leaf production also were lowest, but length and width of leaves, shoot height and leaf growth rate per leaf cluster were the highest of the four study sites. On average, each leaf cluster at any one of the study sites produced 30–31 leaves per year with mean leaf turnover rates of 1.3–1.7% day?1. Annual leaf production of H. tasmanica ranged from 410 to 640 g dry wt.m?2 at the four sites.  相似文献   

10.
We investigated whether rates of net primary production (NPP) and biomass turnover of floating grasses in a central Amazon floodplain lake (Lake Calado) are consistent with published evidence that CO2 emissions from Amazon rivers and floodplains are largely supplied by carbon from C4 plants. Ground‐based measurements of species composition, plant growth rates, plant densities, and areal biomass were combined with low altitude videography to estimate community NPP and compare expected versus observed biomass at monthly intervals during the aquatic growth phase (January–August). Principal species at the site were Oryza perennis (a C3 grass), Echinochloa polystachya, and Paspalum repens (both C4 grasses). Monthly mean daily NPP of the mixed species community varied from 50 to 96 g dry mass m?2 day?1, with a seasonal average (±1SD) of 64±12 g dry mass m?2 day?1. Mean daily NPP (±1SE) for P. repens and E. polystachya was 77±3 and 34±2 g dry mass m?2 day?1, respectively. Monthly loss rates of combined above‐ and below‐water biomass ranged from 31% to 75%, and averaged 49%. Organic carbon losses from aquatic grasses ranged from 30 to 34 g C m?2 day?1 from February to August. A regional extrapolation indicated that respiration of this carbon potentially accounts for about half (46%) of annual CO2 emissions from surface waters in the central Amazon, or about 44% of gaseous carbon emissions, if methane flux is included.  相似文献   

11.
The biomass productivity of Scenedesmus obliquus was investigated outdoors during all seasons in solar tracked flat panel photobioreactors (PBR) to evaluate key parameters for process optimization. CO2 was supplied by flue gas from an attached combined block heat and power plant. Waste heat from the power plant was used to heat the culture during winter. The parameters pH, CO2, and inorganic salt concentrations were automatically adjusted to nonlimiting levels. The optimum biomass concentration increased directly with the photosynthetic active radiation (PAR) from 3 to 5 g dry weight (DW)?L?1 for a low PAR of 10 mol photons m?2 day?1 and high PAR of 40–60 mol photons m?2 day?1, respectively. The annual average biomass yield (photosynthetic efficiency) was 0.4?±?0.5 g DW mol?1 photons. However, biomass yields of 1.5 g DW mol?1 photons close to the theoretical maximum were obtained at low PAR. The productivity (including the night biomass losses) ranged during all seasons from ?5 up to 30 g DW m?2 day?1 with a mean productivity of 9?±?7 g DW m?2 day?1. Low night temperatures of the culture medium and elevated day temperatures to the species-specific optimum increased the productivity. Thus, continuous regulation of the biomass concentration and the culture temperature with regard to the fluctuating weather conditions is essential for process optimization of outdoor microalgal production systems in temperate climates.  相似文献   

12.
1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478–492 g m?2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m?2; mean ± SE) than Payne Creek (39 ± 9 g m?2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g?1) than those from Payne Creek (54 ± 8 mg g?1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day?1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m?2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m?2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter‐year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m?2 in Payne Creek and 7–27 g m?2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%.  相似文献   

13.
The biomass of epiphytes and seagrasses has been measured in relation to leaf age in three monospecific seagrass stands of Thalassia hemprichii (Ehrenb.) Aschers. in Papua New Guinea. From June 1981 through August 1982, biomass values for epiphytes at the three sites ranged from 5 to 70 g ADW m−2 sediment surface at site 1, from 5 to 14 g ADW m−2 at site 2, and from 3.5 to 7.0 g ADW m−2 at the site 3. Annual mean epiphyte biomass values for the different sites were 1.3 g ADW m−2 leaf surface at site 1, 1.7 g ADW m−2 leaf surface at site 2, and 1.5 g ADW m−2 leaf surface at site 3.

The annual mean standing crop of T. hemprichii leaves was highest at site 1 (103 g ADW m−2. Values for site 2 and site 3 were 60 g ADW m−2 and 41 g ADW m−2, respectively.

Production of epiphytes was calculated in three different ways: firstly, by using biomass values for each specific leaf-age group, with corrections for colonization; secondly, by fitting the biomass values with a specific growth curve; and thirdly, by estimated the rate of biomass accumulation. On an area basis, production of epiphytes on leaves of T. hemprichii ranged from 0.55 to 3.97 g ADW m−2 day−1 at site 1, from 0.17 to 0.73 g ADW m−2 day−1 at site 2, and from 0.24 to 0.68 g ADW m−2 day−1 at site 3.  相似文献   


14.
Net production of theEcklonia cava community was monitored on a monthly basis for a year, and annual net production was estimated. Growth rate of blades reached a maximum of about 13 g dry wt·m?2·day?1 in spring and a minimum of about 2 g dry wt·m?2·day?1 in late summer. Annual production of blades was calculated to be 2.84 kg dry wt·m?2·year?1. If the growth of stipes is taken into account, annual net production is estimated to be about 2.9 kg dry wt·m?2·year?1. Standing crop was monitored monthly for two and a half years, and a close negative correlation was found between seasonal change in standing crop and net production. Standing crop reached a maximum of about 3 kg dry wt·m?2 in summer and a minimum of about 1 kg dry wt·m?2 in winter. Low productivity in summer at a period of maximum biomass may be explained by the dense canopy and the large area of reproductive portion occupying a blade, which diminish net assimilation.  相似文献   

15.
A method of estimating above-ground productivity in situ of the seagrass Amphibolis antarctica (Labill.) Sonder & Aschers. has been devised, using tags to determine rates of leaf turnover. This has proved an effective tool in establishing the behavior of the species in relation to the gradient of increasing salinity which is present in Shark Bay. No seagrass was found beyond 64%o, but measurement of production and biomass within dense patches of seagrass at different salinities revealed that these were at a maximum at a salinity of 42%o, decreasing as the salinity increased and also at lower oceanic concentrations. Production rates ranged from 2 to 17 g dry weight m?2 day?1 with biomass from 600 to 2000 g m?2, thus Amphibolis antarctica is one of the more productive Australian seagrass species, even in the hypersaline conditions of the Bay. Despite the obvious correlation between above-ground production and salinity, it is pointed out that the results are not taken to imply causality.  相似文献   

16.
An ecological study of dry matter production was made in a dwarf forest dominated byAlnus maximowiczii at the timberline of Mt. Fuji. Annual gross production was estimated by two methods, namely the summation method using stem analysis and total photosynthesis calculated from leaf area and photosynthetic rate per leaf area. Seasonal changes in relative light intensity and in leaf area were measured in a quadrat. Photosynthesis and respiration rates of samples were measured in temperature-regulated assimilation chambers. The phytomass was 2,989 g d.w.m?2, and those of stems and branches, leaves, and roots were 1,672 g, 293 g, and 1,024 g respectively. The growing period of this plant was about four months and this plant expanded leaves quickly. The maximum gross photosynthetic rate was 21 mg CO2dm?2 h?1 on September 1. Annual net production estimated by examining the annual rings was 922 g d.w.m?2 year?1 and annual respiration was 735 g. Annual gross production estimated from photosynthetic rates was 1,747 g d.w.m?2 year?1. The sum of annual net production by stem analysis and respiration agree closely with gross production estimated from photosynthetic rate. Gross production of this dwarf forest is comparable to the beech forest of the upper cool temperate zone owing to the high photosynthetic rate ofAlnus maximowiczii.  相似文献   

17.
Prosopis glandulosa var. torreyana accounts for nearly 90% of the total plant cover in a mesquite woodland community near Harper's Well along the southern margin of the Salton Sea in the Sonoran Desert of California. Total above-ground biomass in ten individuals studied in detail ranged from 43–760 kg per plant and 1.9–8.5 kg m-2 canopy area. Stand biomass ranged locally from a high of 23,000 kg ha-1 near the wash to 3,500 kg ha-1 in the fringe of this mesquite stand. Net above-ground primary production for 1980 had a mean of 2.2 kg m-2 canopy for shrub forms and 5.3 kg m-2 canopy for tree forms. Mean Prosopis stand production for 1980 was 3,650 kg ha-1, an extremely high value for desert communities. This level of production is particularly high in relation to the low mean annual precipitation of approximately 70 mm. New woody tissues in trunk and branches accounted for 51.5% of the allocation of productivity in Prosopis, a remarkably high woody allocation for a desert plant. Only 33.6% of net primary production was allocated to leaves.  相似文献   

18.
The mean above-ground biomass of reed,Phragmites australis, in closed South Swedish stands was found to be 1 kg dry weight. m?2 in August. Leaves, which are shed in the autumn in contrast to culms that remain standing, represent 26% of the total shoot weight. Because part of the culm will be covered by water, ice and snow 0.5 kg dry weight. m?2 is available for winter harvest. Nutrient concentrations in shoots decrease throughout summer and winter. Although part of the maximal summer standing stock of N, P and K is lost in shed leaves, 55%, 75% and 80%, respectively, can potentially be recycled to rhizomes. Nitrogen fertilization and removal of standing litter in winter can increase above-ground biomass production in reed stands. Reed culms, cut in winter with agricultural machinery or amphibious harvesters, have been tested as a fuel for heating purposes in Sweden  相似文献   

19.
In this paper, the outdoor production of Botryococcus braunii in pilot-scale panel reactors (0.4?m3) is studied under uncontrolled conditions at a location close to the Atacama Desert (Chile). Discontinuous experiments were performed on different dates to determine the feasibility of the culture and the influence of environmental conditions on the system yield. Data showed that solar radiation is a major parameter in determining system yield, the average irradiance inside the culture determining both the growth rate and biomass productivity. A maximum specific growth rate of 0.09?day?1 and biomass productivity of 0.02?g?L?1?day?1 (dry weight) were measured in discontinuous mode, at an average irradiance of 60?μE?m?2?s?1. With respect to lipids, a productivity of 2.5?mg?L?1?day?1 was obtained under favourable growth conditions; no accumulation of lipids at the stationary phase was observed. To confirm this behaviour, a semicontinuous culture was performed at 0.04?day?1 in a larger reactor (1?m3). In this experiment, the biomass concentration and productivity was 0.3?g?L?1 and 0.015?g?L?1?day?1, respectively. The lipid content and productivity was 15.6% and 2.4?mg?L?1?day?1, respectively, the mean average irradiance inside the reactor being 60?μmol photons?m?2?s?1. The light path of the reactor determines the light availability, thus determining also the biomass concentration and productivity of the reactor once the dilution rate is fixed. Experimentally, biomass productivity of 0.015?g?L?1?day?1 was determined for a light path of 0.15?m, but this can be increased by more than three times for a light path of 0.1?m. These data confirm that this alga can be produced outdoors in a secure form, the culture yield improving when optimal conditions are applied, the data reported here establishing the starting point for the development of the process.  相似文献   

20.

Question

Temperate grasslands are known for their high plant diversity and distinct seasonality. However, their intra-annual community dynamics are still largely overlooked by ecologists. Therefore, we explored the seasonal alpha- and beta-diversity patterns of vascular plants and their relationships to above-ground biomass in a rocky steppe (Festucion valesiacae).

Location

Pavlov Hills, SE Czech Republic.

Methods

For one year, we monitored the plant community of the rocky steppe at monthly intervals in 42 permanent plots of 0.25 m2. We examined seasonal changes in above-ground biomass (estimated from the cover and height of living plant parts) and seasonal beta-diversity, which we partitioned into turnover and nestedness components and their quantitative counterparts: balanced changes and abundance gradients.

Results

We identified a pronounced seasonal pattern of above-ground biomass, species richness and composition. Total above-ground biomass was highest in June (summer), with a peak representing only 60% of total annual production (sum of individual species' maxima). However, the observed peak in species richness occurred in March (early spring), with 80% of the total species number recorded throughout the year. Accordingly, nestedness and abundance gradient patterns differed in the spring months, while seasonal turnover and balanced changes in abundance were generally congruent. Annual, short-lived, and perennial species exhibited different seasonal patterns of species richness and biomass production, although a sharp increase in biomass and a peak in species richness in spring were universal across the community.

Conclusions

Seasonal climatic constraints on plant growth are key determinants of primary production dynamics. Plants adapt to these constraints by adjusting their life cycles in different ways. In dry grasslands, the complexity of plant responses to climatic seasonality can result in seasonal beta-diversity patterns with divergent peaks in biomass and species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号