首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Early postnatal development of rat diaphragm muscle (Dia(m)) is marked by dramatic transitions in myosin heavy chain (MHC) isoform expression. We hypothesized that the transition from the neonatal isoform of MHC (MHC(Neo)) to adult fast MHC isoform expression in Dia(m) fibers is accompanied by an increase in both the maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) and the ATP consumption rate during maximum isometric activation (ATP(iso)). Rat Dia(m) fibers were evaluated at postnatal days 0, 14, and 28 and in adults (day 84). Across all ages, V(max) ATPase of fibers was significantly higher than ATP(iso). The reserve capacity for ATP consumption [1 - (ratio of ATP(iso) to V(max) ATP(ase))] was remarkably constant ( approximately 55-60%) across age groups, although at day 28 and in adults the reserve capacity for ATP consumption was slightly higher for fibers expressing MHC(Slow) compared with fast MHC isoforms. At day 28 and in adults, both V(max) ATPase and ATP(iso) were lower in fibers expressing MHC(Slow) followed in rank order by fibers expressing MHC(2A), MHC(2X), and MHC(2B). For fibers expressing MHC(Neo), V(max) ATPase, and ATP(iso) were comparable to values for adult fibers expressing MHC(Slow) but significantly lower than values for fibers expressing fast MHC isoforms. We conclude that postnatal transitions from MHC(Neo) to adult fast MHC isoform expression in Dia(m) fibers are associated with corresponding but disproportionate changes in V(max) ATPase and ATP(iso).  相似文献   

2.
We hypothesized that unilateral denervation (DNV) of the rat diaphragm muscle (Dia(m)) in neonates at postnatal day 7 (D-7) alters normal transitions of myosin heavy chain (MHC) isoform expression and thereby affects postnatal changes in maximum specific force (P(o)) and maximum unloaded shortening velocity (V(o)). The relative expression of different MHC isoforms was analyzed electrophoretically. With DNV at D-7, expression of MHC(neo) in the Dia(m) persisted, and emergence of MHC(2X) and MHC(2B) was delayed. By D-21 and D-28, relative expression of MHC(2A) and MHC(2B) was reduced in DNV compared with control (CTL) animals. Expression of MHC(neo) also reappeared in adult Dia(m) by 2-3 wk after DNV, and relative expression of MHC(2B) was reduced. At each age, P(o) was reduced and V(o) was slowed by DNV, compared with CTL. In CTL Dia(m), postnatal changes in P(o) and V(o) were associated with an increase in fast MHC isoform expression. In DNV Dia(m), no such association existed. We conclude that, in the Dia(m), DNV induces alterations in both MHC isoform expression and contractile properties, which are not necessarily causally linked.  相似文献   

3.
The present study examined Ca(2+) sensitivity of diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that Dia(m) fibers expressing the MHC(slow) isoform have greater Ca(2+) sensitivity than fibers expressing fast MHC isoforms and that this fiber-type difference in Ca(2+) sensitivity reflects the isoform composition of the troponin (Tn) complex (TnC, TnT, and TnI). Studies were performed in single Triton-X-permeabilized Dia(m) fibers. The Ca(2+) concentration at which 50% maximal force was generated (pCa(50)) was determined for each fiber. SDS-PAGE and Western analyses were used to determine the MHC and Tn isoform composition of single fibers. The pCa(50) for Dia(m) fibers expressing MHC(slow) was significantly greater than that of fibers expressing fast MHC isoforms, and this greater Ca(2+) sensitivity was associated with expression of slow isoforms of the Tn complex. However, some Dia(m) fibers expressing MHC(slow) contained the fast TnC isoform. These results suggest that the combination of TnT, TnI, and TnC isoforms may determine Ca(2+) sensitivity in Dia(m) fibers.  相似文献   

4.
Sieck, Gary C., Louise E. Wilson, Bruce D. Johnson, andWen-Zhi Zhan. Hypothyroidism alters diaphragm muscle development. J. Appl. Physiol. 81(5):1965-1972, 1996.The impact of hypothyroidism (Hyp) onmyosin heavy chain (MHC) isoform expression, maximum specific force(Po), fatigability, and maximumunloaded shortening velocity(Vo) wasdetermined in the rat diaphragm muscle (Dia) at 0, 7, 14, 21, and 28 days of age. Hyp was induced by treating pregnant rats with6-n-propyl-2-thiouracil (0.05% indrinking water) beginning at gestational day10 and was confirmed by reduced plasma levels of3,5,3-triiodothyronine and thyroxine. MHC isoforms wereseparated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and analyzed by densitometry. IsometricPo and fatigue resistance of theDia were measured in vitro at 26°C, andVo was determined at 15°C with the slack test. Compared with control muscles,expression of MHC-slow was higher and expression of adult fast MHCisoforms was lower in Hyp Dia at all ages. The neonatal isoform of MHC continued to be expressed in the Hyp Dia until day28. At each age,Po and fatigability were reducedand Vo was slowerin the Hyp Dia. We conclude that Hyp-induced alterations in MHC isoform expression do not fully predict the changes in Dia contractile properties.

  相似文献   

5.
Developmental effects on myonuclear domain size of rat diaphragm fibers.   总被引:1,自引:0,他引:1  
During early postnatal development in rat diaphragm muscle (Diam), significant fiber growth and transitions in myosin heavy chain (MHC) isoform expression occur. Similar to other skeletal muscles, Diam fibers are multinucleated, and each myonucleus regulates the gene products within a finite volume: the myonuclear domain (MND). We hypothesized that postnatal changes in fiber cross-sectional area (CSA) are associated with increased number of myonuclei so that the MND size is maintained. The Diam was removed at postnatal days 14 (P-14) and 28 (P-28). MHC isoform expression was determined by SDS-PAGE. Fiber CSA, myonuclear number, and MND size were measured using confocal microscopy. By P-14, significant coexpression of MHC isoforms was present with no fiber displaying singular expression of MHCNeo. By P-28, singular expression was predominant. MND size was not different across fiber types at P-14. Significant fiber growth was evident by P-28 at all fiber types (fiber CSA increased by 61, 93, and 147% at fibers expressing MHCSlow, MHC2A, and MHC2X, respectively). The number of myonuclei per unit of fiber length was similar across fibers at P-14, but it was greater at fibers expressing MHC2X at P-28. The total number of myonuclei per fiber also increased between P-14 and P-28 at all fiber types. Accordingly, MND size increased significantly by P-28 at all fiber types, and it became larger at fibers expressing MHC2X compared with fibers expressing MHCSlow or MHC2A. These results suggest that MND size is not maintained during the considerable fiber growth associated with postnatal development of the Diam.  相似文献   

6.
7.
8.
We studied the postnatal expression of heavy-chain (MHC) and native myosin isoforms in an expiratory abdominal muscle of the rat, the external abdominal oblique (EO). Moreover, we contrasted EO myosin expression with that of the costal diaphragm (DIA) to draw inspiratory vs. expiratory muscle comparisons during development. Examination of MHC gels demonstrated a mature phenotype of slow and adult fast myosin isoforms at an earlier age in the EO (day 60) than in the DIA [day > 115 (adult)]. The mature MHC phenotype of the EO was characterized by a preponderance of MHC 2B, whereas the DIA was characterized by approximately equal portions of MHC slow, MHC 2A, and MHC 2X. During early postnatal development, there was a delay in the expression of MHC 2A in the EO compared with the DIA. However, MHC 2B, expressed later in development in both muscles, was noted in the EO before the DIA. We conclude that 1) the EO mature myosin phenotype is characterized by a preponderance of fast myosin isoforms and 2) the EO and DIA muscles are subject to different temporal patterns of isoform expression during postnatal development.  相似文献   

9.
10.
Organic anion transporters (OAT1 and OAT3) and multidrug resistance-associated proteins (MRP2 and MRP4) play important roles in anionic drug secretion in renal proximal tubules. Changes in the expression of such transporters are considered to affect the tubular secretion of anionic drugs. The purpose of this study was to elucidate the developmental changes in the expression of OAT1, OAT3, MRP2, and MRP4 and their effects on the tubular secretion of drugs. The mRNA level of each transporter was measured by real-time PCR, and the protein expression was evaluated by Western blotting and immunohistochemical analysis. In addition, the tubular secretion of phenolsulfonphthalein (PSP) in infant (postnatal day 14) and adult rats was estimated based on in vivo clearance study. The protein expression of organic anion transporters were very low at postnatal day 0 and gradually increased with age. In postnatal day 14 rats, the expression of OAT1 and OAT3 seemed to be at almost mature levels, while MRP2 and MRP4 seemed to be at immature levels. Immunohistochemical analysis in the kidney of postnatal day 0 rats revealed OATs on the basolateral membrane and MRPs on the brush-border membrane. At postnatal day 0, the distribution of these transporters was restricted to the inner cortical region, while after postnatal day 14, it was identical to that in adult kidney. An in vivo clearance study revealed that the tubular secretion of PSP was significantly lower in postnatal day 14 rats than adult rats. These results indicate that age-dependent changes in organic anion transporter expression affect the tubular secretion of anionic drugs in pediatric patients.  相似文献   

11.
12.
In the adult rat, there is a general correspondence between the sizes of motoneurons, motor units, and muscle fibers that has particular functional importance in motor control. During early postnatal development, after the establishment of singular innervation, there is rapid growth of diaphragm muscle (Dia(m)) fibers. In the present study, the association between Dia(m) fiber growth and changes in phrenic motoneuron size (both somal and dendritic) was evaluated from postnatal day 21 (D21) to adulthood. Phrenic motoneurons were retrogradely labeled with fluorescent tetramethylrhodamine dextran (3,000 MW), and motoneuron somal volumes and surface areas were measured using three-dimensional confocal microscopy. In separate animals, phrenic motoneurons retrogradely labeled with choleratoxin B-fragment were visualized using immunocytochemistry, and dendritic arborization was analyzed by camera lucida. Between D21 and adulthood, Dia(m) fiber cross-sectional area increased by approximately 164% overall, with the growth of type II fibers being disproportionate to that of type I fibers. There was also substantial growth of phrenic motoneurons ( approximately 360% increase in total surface area), during this same period, that was primarily attributable to an expansion of dendritic surface area. Comparison of the distribution of phrenic motoneuron surface areas between D21 and adults suggests the establishment of a bimodal distribution that may have functional significance for motor unit recruitment in the adult rat.  相似文献   

13.
The aim of this study was to evaluate the potential mechanisms underlying the improved contractility of the diaphragm (Dia) in adult intact male hamsters after nandrolone (Nan) administration, given subcutaneously over 4 wk via a controlled-release capsule (initial dose: 4.5 mg. kg-1. day-1; with weight gain, final dose: 2.7 mg. kg-1. day-1). Control (Ctl) animals received blank capsules. Isometric contractile properties of the Dia were determined in vitro after 4 wk. The maximum velocity of unloaded shortening (Vo) was determined in vitro by means of the slack test. Dia fibers were classified histochemically on the basis of myofibrillar ATPase staining and fiber cross-sectional area (CSA), and the relative interstitial space was quantitated. Ca2+-activated myosin ATPase activity was determined by quantitative histochemistry in individual diaphragm fibers. Myosin heavy chain (MHC) isoforms were identified electrophoretically, and their proportions were determined by using scanning densitometry. Peak twitch and tetanic forces, as well as Vo, were significantly greater in Nan animals compared with Ctl. The proportion of type IIa Dia fibers was significantly increased in Nan animals. Nan increased the CSA of all fiber types (26-47%), whereas the relative interstitial space decreased. The relative contribution of fiber types to total costal Dia area was preserved between the groups. Proportions of MHC isoforms were similar between the groups. There was a tendency for increased expression of MHC2B with Nan. Ca2+-activated myosin ATPase activity was increased 35-39% in all fiber types in Nan animals. We conclude that, after Nan administration, the increase in Dia specific force results from the relatively greater Dia CSA occupied by hypertrophied muscle fibers, whereas the increased ATPase activity promotes a higher rate of cross-bridge turnover and thus increased Vo. We speculate that Nan in supraphysiological doses have the potential to offset or ameliorate conditions associated with enhanced proteolysis and disordered protein turnover.  相似文献   

14.
15.
16.
In the present study, myosin heavy chain (MHC) content per half sarcomere, an estimate of the number of cross bridges available for force generation, was determined in rat diaphragm muscle (Dia(m)) fibers expressing different MHC isoforms. We hypothesize that fiber-type differences in maximum specific force [force per cross-sectional area (CSA)] reflect the number of cross bridges present per CSA. Studies were performed on single, Triton X-100-permeabilized rat Dia(m) fibers. Maximum specific force was determined by activation of single Dia(m) fibers in the presence of a high-calcium solution (pCa, -log Ca(2+) concentration of 4.0). SDS-PAGE and Western blot analyses were used to determine MHC isoform composition and MHC content per half sarcomere. Differences in maximum specific force across fast MHC isoforms were eliminated when controlled for half-sarcomere MHC content. However, the force produced by slow fibers remained below that of fast fibers when normalized for the number of cross bridges available. On the basis of these results, the lower force produced by slow fibers may be due to less force per cross bridge compared with fast fibers.  相似文献   

17.
The eEF1Alpha-2 gene (S1) encodes a tissue-specific isoform of peptide elongation factor-1A (eEF1A-1); its mRNA is expressed only in brain, heart, and skeletal muscle, tissues dominated by terminally differentiated, long-lived cells. Homozygous mutant mice exhibit muscle wasting and neurodegeneration, resulting in death around postnatal day 28. eEF1Alpha-2/S1 protein shares 92% identity with eEF1A-1; because specific antibodies for each were not available previously, it was difficult to study the developmental expression patterns of these two peptide elongation factors 1A in wasted and wild-type mice. We generated a peptide-derived antiserum that recognizes the eEF1Alpha-2/S1 isoform and does not cross-react with eEF1A-1. We characterized the expression profiles of eEF1A-1 and eEF1A-2/S1 during development in wild-type (+/+), heterozygous (+/wst), and homozygous (wst/wst) mice. In wild-type and heterozygous animals, eEF1A-2/S1 protein is present only in brain, heart, and muscle; the onset of its expression coincides with a concomitant decrease in the eEF1A-1 protein level. In wasted mutant tissues, even though eEF1A-2/S1 protein is absent, the scheduled decline of eEF1A-1 occurs nonetheless during postnatal development, as it does in wild-type counterparts. In the brain of adult wild-type mice, the eEF1A-2/S1 isoform is localized in neurons, whereas eEF1A-1 is found in non-neuronal cells. In neurons prior to postnatal day 7, eEF1A-1 is the major isoform, but it is later replaced by eEF1A-2/S1, which by postnatal day 14 is the only isoform present. The postdevelopmental appearance of eEF1A-2/S1 protein and the decline in eEF1A-1 expression in brain, heart, and muscle suggest that eEF1A-2/S1 is the adult form of peptide elongation factor, whereas its sister is the embryonic isoform, in these tissues. The absence of eEF1A-2/S1, as well as the on-schedule development-dependent disappearance of its sister gene, eEF1A, in wst/wst mice may result in loss of protein synthesis ability, which may account for the numerous defects and ultimate fatality seen in these mice.  相似文献   

18.
19.
20.
A cDNA clone, labeled pFOD5, isolated from a fetal-rat skeletal-muscle cDNA library, has been characterized and found to contain sequences corresponding to a perinatal-specific skeletal myosin heavy-chain (MHC) mRNA. This MHC cDNA demonstrates a high degree of nucleotide- and amino acid-sequence conservation with other MHC genes, but its carboxyl-terminal peptide and 3'-untranslated region are highly divergent and specific for this gene. S1 nuclease mapping experiments have shown that the perinatal MHC gene represented by this cDNA clone is only transiently expressed during skeletal-muscle development. Perinatal MHC mRNA is first detected late in fetal life, reaches maximal levels of expression at the end of the first postnatal week, and is de-induced thereafter. Its levels are almost undetectable at 28 days of postnatal life. During fetal and early postnatal life, the expression of this perinatal gene in skeletal muscle overlaps with the expression of the embryonic MHC gene. After the first week of extrauterine life, this gene is coexpressed with two adult MHC genes. The transient expression of this perinatal MHC gene raises interesting questions about the physiological significance of the MHC transitions and offers an interesting model for the study of MHC gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号