首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phylogenetic analysis of the nucleotide sequences of 16S rRNA genes in the metagenomic community of Lubomirskia baicalensis has revealed taxonomic diversity of bacteria associated with the endemic freshwater sponge. Fifty-four operational taxonomic units (OTUs) belonging to six bacterial phyla (Actinobacteria, Proteobacteria (class ??-Proteobacteria and ??-Proteobacteria) Verrucomicrobia, Bacteroidetes, Cyanobacteria, and Nitrospira) have been identified. Actinobacteria, whose representatives are known as antibiotic producers, is the dominant phylum of the community (37%, 20 OTUs). All sequences detected shared the maximal homology with unculturable microorganisms from freshwater habitats. The wide diversity of bacteria closely coexisting with the Baikal sponge indicate the complex ecological relationships in the community formed under the unique conditions of Lake Baikal.  相似文献   

2.
The aim of this study was to determine the bacteria present in the fecal material of the endangered Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Fecal samples were collected from 12 Yangtze finless porpoises living in the wild at Poyang Lake, located in Jiangxi Province, China. To determine the bacterial diversity, a 16S rRNA gene clone library using the bacterial PCR primers fD1 and rP2, was prepared. A total of 138 near-full-length sequences were analyzed and 39 operational taxonomic units (OTUs) were identified. Sequences showing ≥97% similarity were grouped together as an OTU. Six different phyla were identified in which 38 OTUs were classified. Most of the OTUs contained sequences belonged to the phylum Firmicutes (51.3%), followed by Tenericutes (17.9%), Proteobacteria (15.4%), Actinobacteria (7.7%), Deinococcus-Thermus (2.6%) and Cyanobacteria (2.6%). A phylum could not be assigned for one clone within one OTU (2.6%). It appears that the Yangtze finless porpoise has a more diverse range of bacteria compared to other aquatic mammals, such as seals.  相似文献   

3.
To provide insight into the phylogenetic bacterial diversity of the freshwater sponge Spongilla lacustris, a 16S rRNA gene libraries were constructed from sponge tissues and from lake water. Restriction fragment length polymorphism (RFLP) analysis of >190 freshwater sponge-derived clones resulted in six major restriction patterns, from which 45 clones were chosen for sequencing. The resulting sequences were affiliated with the Alphaproteobacteria (n = 19), the Actinobacteria (n = 15), the Betaproteobacteria (n = 2), and the Chloroflexi (n = 2) lineages. About half of the sequences belonged to previously described actinobacterial (hgc-I) and betaproteobacterial (beta-II) sequence clusters of freshwater bacteria that were also present in the lake water 16S rRNA gene library. At least two novel, deeply rooting alphaproteobacterial lineages were recovered from S. lacustris that showed <89% sequence similarity to known phylogenetic groups. Electron microscopical observations revealed that digested bacterial remnants were contained within food vacuoles of sponge archaeocytes, whereas the extracellular matrix was virtually free of bacteria. This study is the first molecular diversity study of a freshwater sponge and adds to a growing database on the diversity and community composition of sponge-associated microbial consortia.  相似文献   

4.
Li CQ  Liu WC  Zhu P  Yang JL  Cheng KD 《Microbial ecology》2011,62(4):800-812
Several molecular techniques were employed to document the bacterial diversity associated with the marine sponge Gelliodes carnosa. Cultivation-dependent and cultivation-independent methods were used to obtain the 16S rRNA gene sequences of the bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the bacterial community structure was highly diverse with representatives of the high G + C Gram-positive bacteria, cyanobacteria, low G + C Gram-positive bacteria, and proteobacteria (α-, β-, and γ-), most of which were also found in other marine environments, including in association with other sponges. Overall, 300 bacterial isolates were cultivated, and a total of 62 operational taxonomic units (OTUs) were identified from these isolates by restriction fragment length polymorphism (RFLP) analysis and DNA sequencing of the 16S rRNA genes. Approximately 1,000 16S rRNA gene clones were obtained by the cultivation-independent method. A total of 310 clones were randomly selected for RFLP analysis, from which 33 OTUs were acquired by further DNA sequencing and chimera checking. A total of 12 cultured OTUs (19.4% of the total cultured OTUs) and 13 uncultured OTUs (39.4% of the total uncultured OTUs) had low sequence identity (≤97%) with their closest matches in GenBank and were probably new species. Our data provide strong evidence for the presence of a diverse variety of unidentified bacteria in the marine sponge G. carnosa. A relatively high proportion of the isolates exhibited antimicrobial activity, and the deferred antagonism assay showed that over half of the active isolates exhibited a much stronger bioactivity when grown on medium containing seawater. In addition to demonstrating that the sponge-associated bacteria could be a rich source of new biologically active natural products, the results may have ecological implications. This study expands our knowledge of the diversity of sponge-associated bacteria and contributes to the growing database of the bacterial communities within sponges.  相似文献   

5.
采用海绵组织离散、细胞分离的方法,对繁茂膜海绵细胞进行纯化、胞内微生物DNA提取,构建了繁茂膜海绵细胞内微生物的16SrDNA克隆,对其遗传多样性进行了分析,发现海绵细胞内微生物16SrDNA序列主要归类于紫硫细菌门(Proteobacteria)中的α-亚门、γ-亚门和浮霉菌门(Planctomycetes)等类群。与研磨直接提取海绵组织DNA所得海绵组织中总微生物多样性相比,海绵细胞内存在丰富的浮霉菌(23%),说明浮霉菌主要存在于海绵细胞胞内。  相似文献   

6.
The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It is noted that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.  相似文献   

7.
Bacterial communities in buffalo rumen were characterized using a culture-independent approach for a pooled sample of rumen fluid from 3 adult Surti buffaloes. Buffalo rumen is likely to include species of various bacterial phyla, so 16S rDNA sequences were amplified and cloned from the sample. A total of 191 clones were sequenced and similarities to known 16S rDNA sequences were examined. About 62.82% sequences (120 clones) had >90% similarity to the 16S rDNA database sequences. Furthermore, about 34.03% of the sequences (65 clones) were 85–89% similar to 16S rDNA database sequences. For the remaining 3.14%, the similarity was lower than 85%. Phylogenetic analyses were also used to infer the makeup of bacterial communities in the rumen of Surti buffalo. As a result, we distinguished 42 operational taxonomic units (OTUs) based on unique 16S r DNA sequences: 19 OTUs affiliated to an unidentified group (45.23% of total OTUs), 11 OTUs of the phylum Firmicutes, also known as the low G+C group (26.19%), 7 OTUs of theCytophaga-Flexibacter-Bacteroides phylum (16.66%), 4 OTUs of Spirochaetes (9.52%), and 1 OTU of Actinobacteria (2.38%). These include 10 single-clone OTUs, so Good’s coverage (94.76%) of 16S rRNA libraries indicated that sequences identified in the libraries represent the majority of bacterial diversity present in rumen.  相似文献   

8.
Silicateins are proteins found within spicules of siliceous sponges. They are analogs of proteinases cathepsins; they catalyze the transformation of silicic acid esters into biogenic silica (SiO2·nH2O), and are believed to take part in the processes of silicification in marine and freshwater sponges. Earlier studies by Kalyuzhnaya et al. revealed that the Baikal Sponge Lubomirskia baicalensis Pallas, 1773 (L. baicalensis) contains a gene 1988 bp long, which hosts four sequences that encode four mRNAs giving rise to silicateins α1, α2, α3 and α4 (SILα1, SILα2, SILα3, SILα4) whose predicted amino acid sequences are similar to those of the predicted sequences of marine sponge silicateins. However, the sequences of mature silicateins of L. baicalensis remained unknown, since their N‐terminal peptides were not identified. We found the sequences of these N‐terminal peptides using a combination of the Edman procedure, which involved reaction with phenylisothiocyanate, treatment with trifluoroacetic acid and trypsinolysis followed by treatment with 4‐bromine‐phenylisothiocyanate performed directly within polyacrylamide gel bands, and subsequent mass spectrometry. The N‐terminal peptides are YAESIDWR (SILα1), YVDSIDWR (SILα2 and α4), and YADSLDWR (SILα3). All mature silicateins of L. baicalensis had a length 217 amino acid residues.  相似文献   

9.
16S rRNA gene clone libraries were separately constructed from three ponds with different salt concentrations, M2 (15%), TS38 (25%) and S5 (32%), located within a multipond solar saltern of Sfax. The 16S rRNA genes from 216 bacterial clones and 156 archaeal clones were sequenced and phylogenetically analyzed. 44 operational taxonomic units (OTUs) were generated for Bacteria and 67 for Archaea. Phylogenetic groups within the bacterial domain were restricted to Bacteroidetes and Proteobacteria, with the exception that one cyanobacterial OTU was found in the TS38 pond. 85.7, 26.6 and 25.0% of the bacterial OTUs from M2, TS38 and S5 ponds, respectively, are novel. All archaeal 16S rRNA gene sequences were exclusively affiliated with Euryarchaeota. 75.0, 60.0 and 66.7% of the OTUs from, respectively, M2, TS38 and S5 ponds are novel. The result showed that the Tunisian multipond solar saltern harbored novel prokaryotic diversity that has never been reported before for solar salterns. In addition, diversity measurement indicated a decrease of bacterial diversity and an increase of archaeal diversity with rising salinity gradient, which was in agreement with the previous observation for thalassohaline systems. Comparative analysis showed that prokaryotic diversity of Tunisian saltern was higher than that of other salterns previously studied. A. Sghir and E. Ammar have equally contributed to this work.  相似文献   

10.
The objective of this study was to analyze bacterial diversity in two different concrete samples to understand the dominant types of bacteria that may contribute to concrete corrosion. Two concrete samples, HN-1 from the sunny side and HN-2 from dark and damp side, were collected from Zijin Mountain in Nanjing and genomic DNA was extracted. The partial bacterial 16S rRNA gene fragment was PCR amplified and two clone libraries were constructed. Amplified ribosomal DNA restriction analysis (ARDRA) was performed by digestion of the 16S rRNA gene and each unique restriction fragment polymorphism pattern was designated as an operational taxonomic unit (OTU). Phylogenetic trees of bacterial 16S rDNA nucleotide sequences were constructed. Sample HN-1 and HN-2 contained 21 OTUs and 26 OTUs, respectively. Proteobacteria and Planctomycetes were the predominant bacteria in both samples, and they are distributed among Herbaspirillum, Archangium, Phyllobacteriaceae and Planctomycetaceae. Cyanobacteria and Rubrobacter sp. are dominant in HN-1; while Acidobacteriaceae, Adhaeribacter sp. and Nitrospira sp. are predominant in HN-2. This distribution pattern was consistent with local environmental conditions of these two samples. The inferred physiological characteristics of these bacteria, based on relatedness of the DNA clone sequences to cultivated species, revealed different mechanisms of concrete corrosion depending on the local environmental conditions.  相似文献   

11.
We studied bacterial diversity and community composition in three shallow pools of a Swiss karst cave system with contrasting hydrological and hydrochemical properties. The microbial assemblages in the pools were remarkably different, and only one operational taxonomic unit of 16S rRNA genes (OTU, 97% similarity) was shared between the three of them (total OTU number in all pools: 150). Unexpectedly high microbial phylotype richness was found even in the two pools without groundwater contact and with low concentrations of organic carbon and total cell numbers (< 104 ml?1). One of these seepage water fed systems harboured 15 distinct OTUs from several deeply branching lineages of the candidate phylum OP3, whereas representatives of this group were not detected in the other two pools. A tentative phylogeographic analysis of available OP3‐related sequences in the context of our data set revealed that there was generally little agreement between the habitats of origin of closely related sequence types. Two bacterial clades affiliated with the obligate methylamine utilizer Methylotenera mobilis were only found in the pool that was exposed to repeated flooding events. These bacteria formed relatively stable populations of up to 6% of total cell counts over periods of several months irrespective of inundation by groundwater. This suggests that karst water may provide a means of transport for these bacteria from terrestrial to freshwater habitats.  相似文献   

12.
Operational taxonomic units (OTUs) are conventionally defined at a phylogenetic distance (0.03—species, 0.05—genus, 0.10—family) based on full-length 16S rRNA gene sequences. However, partial sequences (700 bp or shorter) have been used in most studies. This discord may affect analysis of diversity and species richness because sequence divergence is not distributed evenly along the 16S rRNA gene. In this study, we compared a set each of bacterial and archaeal 16S rRNA gene sequences of nearly full length with multiple sets of different partial 16S rRNA gene sequences derived therefrom (approximately 440-700 bp), at conventional and alternative distance levels. Our objective was to identify partial sequence region(s) and distance level(s) that allow more accurate phylogenetic analysis of partial 16S rRNA genes. Our results showed that no partial sequence region could estimate OTU richness or define OTUs as reliably as nearly full-length genes. However, the V1-V4 regions can provide more accurate estimates than others. For analysis of archaea, we recommend the V1-V3 and the V4-V7 regions and clustering of species-level OTUs at 0.03 and 0.02 distances, respectively. For analysis of bacteria, the V1-V3 and the V1-V4 regions should be targeted, with species-level OTUs being clustered at 0.04 distance in both cases.  相似文献   

13.
The aim of this study was to describe the microbial communities in the distal gut of wild wolves (Canis lupus). Fecal samples were collected from three healthy unrelated adult wolves captured at the nearby of Dalai Lake Nature Reserve in Inner Mongolia of China. The diversity of fecal bacteria was investigated by constructing PCR-amplified 16S rRNA gene clone libraries using the universal bacterial primers 27 F and 1493 R. A total of 307 non-chimeric near-full-length 16S rRNA gene sequences were analyzed and 65 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified. Seventeen OTUs (26%) showed less than 98% sequence similarity to 16S rRNA gene sequences were reported previously. Five different bacterial phyla were identified, with the majority of OTUs being classified within the phylum Firmicutes (60%), followed by Bacteroidetes (16.9%), Proteobacteria (9.2%), Fusobacteria (9.2%) and Actinobacteria (4.6%). The majority of clones fell within the order Clostridiales (53.8% of OTUs). It was predominantly affiliated with five families: Lachnospiraceae was the most diverse bacterial family in this order, followed by Ruminococcaceae, Clostridiaceae, Peptococcaceae and Peptostreptococcaceae.  相似文献   

14.
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.  相似文献   

15.
Relatively little is known about the distribution and diversity of CO‐oxidizing bacteria during succession on volcanic deposits even though they are among the primary colonists. We surveyed CO‐oxidizing communities across a vegetation gradient on a 1959 cinder deposit using coxL (large subunit gene of carbon monoxide dehydrogenase) sequences. Sequences most closely related to a coxL sequence from Ktedonobacter racemifer, dominated unvegetated cinders, while Proteobacteria‐like sequences dominated vegetated sites. The number of coxL operational taxonomic units (OTUs) increased threefold with increased vegetation, and correlated most strongly with the increased β‐Proteobacteria richness (r = 0.987). These compositional shifts were also reflected in overall bacterial community compositions as determined by 16S rRNA gene analysis. Notably, coxL OTU:16S rRNA OTU ratios increased with increased vegetation, indicating that CO oxidizers became a larger fraction of total bacterial richness during succession. Results from most probable number estimates and maximum potential CO uptake activity assays indicate that increased richness is paralleled by increased CO oxidizer abundance, which likely results from increased vegetation and organic carbon content. Collectively, results suggest that in contrast to patterns observed for plant succession, a versatile bacterial functional group that is important during early colonization and succession can remain important in later stages of succession, irrespective of dramatic environmental changes.  相似文献   

16.
The spatial distribution of the fauna associated with a branched sponge, Lubomirskia baicalensis, endemic of Lake Baikal has been quantitatively studied. The biomass and numbers of three amphipod species which inhabit the sponge correlate (linearly or non-linearly) with the weight of the sponge.  相似文献   

17.
Previous studies have demonstrated the wide occurrence of anaerobic ammonium oxidizing (anammox) bacteria; however, there is very limited information on the distribution of these bacteria in freshwater habitats. In this study, the anammox bacterial communities were detected by molecular analysis targeting the 16S rRNA genes in the sediments of Lake Taihu, a large and shallow eutrophic freshwater lake in China. The recovery of specific 16S rRNA sequences with two stable monophyletic clusters indicated that anammox bacteria were present in Lake Taihu. A phylogenetic analysis indicated that these two groups represent two novel lineages within the first subgroup of anammox bacteria, independent of the treeing methods. High intra-lake variability in anammox bacterial diversity and community composition was observed, in particular, based on a 1% cut-off of 16S rRNA sequence variation. The spatial variability was largely related to the substrate availability, which was denoted by the correlations between the relative abundance of the two Taihu anammox bacterial groups and the concentrations of ammonium and nitrite. This indicates that the niche differentiation of anammox bacteria is linked to the environmental heterogeneity. These findings suggest that the freshwater lakes may accommodate different anammox bacterial communities and, thus, expand our knowledge on the diversity and distribution of anammox bacteria. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

18.
Phylogenetic diversity among filamentous sulfur-oxidizing bacteria of the genus Thioploca inhabiting freshwater/brackish environments was analyzed in detail. The 16S rRNA gene sequence of Thioploca found in a freshwater lake in Japan, Lake Okotanpe, was identical to that of Thioploca from Lake Ogawara, a brackish lake. The samples of the two lakes could be differentiated by the sequences of their 23S rRNA genes and 16S–23S rRNA internal transcribed spacer (ITS) regions. The 23S rRNA-based phylogenetic relationships between Thioploca samples from four lakes (Lake Okotanpe, Lake Ogawara, Lake Biwa, and Lake Constance) were similar to those based on the 16S rRNA gene sequences. In addition, multiple types of the ITS sequences were obtained from Thioploca inhabiting Lake Okotanpe and Lake Constance. Variations within respective Thioploca populations were also observed in the analysis of the soxB gene, involved in sulfur oxidation. As major members of the sheath-associated microbial community, bacteria of the phylum Chloroflexi were consistently detected in the samples from different lakes. Fluorescence in situ hybridization revealed that they were filamentous and abundantly distributed within the sheaths of Thioploca.  相似文献   

19.
赵帅  周娜  赵振勇  张科  田长彦 《微生物学报》2016,56(6):1000-1008
【目的】探讨盐角草根部内生细菌群落多样性特征,揭示内生细菌群落结构在宿主关键发育期动态变化规律。【方法】通过罗氏454高通量测序获得内生细菌16S r RNA片段,然后进行生物信息分析。【结果】共获得20363条16S r RNA基因序列。各样品中可操作分类单元(operational taxonomic units,OTUs)在552–941之间。根部内生细菌群落主要包括4个门,其中Proteobacteri门占主导地位,其余依次是Firmicutes,Actinobacteria,Bacteroidetes。在Proteobacteria门中,Gammaproteobacteria是第一大纲,其后是Betaproteobacteria纲。宿主5个发育时期共同拥有7个细菌属,包括Azomonas,Serratia,Pantoea,Serpens,Pseudomonas,Halomonas,Kushneria。整体上看,Gammaproteobacteria纲在宿主5个发育时期呈现增长趋势。优势菌属在5个发育期存在差异,分别为Delftia,Kushneria,Serratia,Pantoea,Erwinia。所有文库总共含2108个特异OTUs,共同拥有5个相同OTUs。花期OTUs数量最多,结种期内生细菌多样性降低。在宿主的5个发育时期中,土壤p H、月均温和土壤盐含量这3个环境因子组成的集合对其内生细菌群落变化具有显著影响。【结论】盐角草内生细菌群落多样性丰富,宿主发育期决定了内生细菌群落结构。  相似文献   

20.
The ostrich (Struthio camelus) is a herbivorous bird and although the hindgut is known as the site for fiber digestion, little is known about the microbial diversity in the ostrich hindgut. Our aim was to analyze the microbial diversity in ostrich ceca using a 16S ribosomal RNA gene (rDNA) clone library approach. A total of 310 clones were sequenced and phylogenetically analyzed and were classified into 110 operational taxonomy units (OTUs) based on a 98% similarity criterion. The similarity of the sequences ranged from 86 to 99% and 95 OTUs had less than 98% similarity to the sequences in the public databases. Coverage and the Shannon–Wiener index (H′) of the library were 83.9% and 4.29, respectively. The sequences were assigned to the following 6 phyla: Firmicutes (50.9% of the total number of sequences), Bacteroidetes (39.4%), Fibrobacteres (6.5%), Euryarchaeota (1.9%), Spirochaetes (1.0%), and Verrucomicrobia (0.3%); approximately 90% of the sequences were affiliated with Firmicutes and Bacteroidetes. The only OTU of Fibrobacteres (OTU 107), had 93 and 90% similarity to Fibrobacter succinogenes and F. intestinalis, respectively, suggesting a new species of Fibrobacter in ostrich ceca. Clostridium coccoides and C. leptum formed major groups within the Firmicutes. There was no OTU with high similarity (≥98%) to the 16S rDNA of cultivated fibrolytic bacteria in our library. Although two OTUs were affiliated with Euryarchaeota, no sequence was affiliated with methanogenic Archaea. This study presents the very complex ostrich cecal microbial community, in which the majority of the bacterial species have not yet been cultivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号