首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lim SJ  Fox P 《Bioresource technology》2011,102(4):3724-3729
A static granular bed reactor (SGBR) was used to treat swine wastewater at 24 and 16 °C. At 24 °C, the organic loading rate (OLR) was 0.7-5.4 kg COD/m3 day and the average chemical oxygen demand (COD) removal efficiency was 88.5%, respectively. Meanwhile, at 16 °C, the OLR was 1.6-4.0 kg COD/m3 day and the average COD removal efficiency was 68.0%, respectively. The SGBR acted as a bioreactor as well as a biofilter. After backwashing, the recovery of COD removal was not a function of an OLR but recovery time, while that of TSS removal was not a function of either recovery time or the OLR. The maximum substrate utilization rate (kmax) ratio was 1.89 between 24 and 16 °C, and the half velocity constant (Ks) ratio was 1.22, and the maximum specific growth rate (μmax) ratio was 4.71. In addition, the temperature-activity coefficient in this study was determined to be 1.09.  相似文献   

2.
Lim SJ  Fox P 《Bioresource technology》2011,102(11):6399-6404
In order to evaluate the static granular bed reactor (SGBR), a chemical oxygen demand (COD) balance was used along with a mathematical model. The SGBR was operated with an organic loading rate (OLR) ranging from 0.8 to 5.5 kg/m3 day at 24 °C. The average COD removal efficiency was 87.4%, and the removal efficiencies of COD, carbohydrates, and proteins increased with an OLR, while the lipids removal efficiency was not a function of an OLR. From the results of the COD balance, the yield of biomass increased with an OLR. The SGBR was modeled using the general transport equation considering advection, diffusion, and degradation by microorganisms, and the first-order reaction rate constant was 0.0166/day. The simulation results were in excellent agreement with experimental data. In addition, the SGBR model provided mechanistic insight into why the COD removal efficiency in the SGBR is proportional to an OLR.  相似文献   

3.
This paper describes the thermophilic (55 °C) anaerobic biodegradation of a mixed feed composed of vinasses and cutting oil wastewater (COW) in a laboratory upflow anaerobic fixed-film reactor (UAFF) with a porous support medium. The experimental protocol was defined to examine the effect of increasing the percentage of cutting oil wastewater in the feed.The UAFF reactor was initially started-up with vinasses as the only carbon source at an organic loading rate of 22.3 kg COD/m3 day and HRT of 0.8 days using porous particles as the support (SIRAN). The percentage of organic matter composed of vinasses was subsequently reduced while increasing the amount of cutting oil until 100% of cutting oil wastewater was added in the feed. Four stages were considered in the study (0, 42.4, 66.6 and 100% COW). HRT was adjusted in order to maintain an approximately constant organic loading rate applied to the system. Under theses conditions, the UAFF reactor was subjected to a programme of steady-state operation with hydraulic retention times (HRT) in the range 0.8–0.15 days and organic loading rates (OLR) between 22.3 and 14.9 kg COD/m3 day in order to evaluate the treatment capacity of the system.The COD removal efficiency was found to be 87% COD and 94.6% TOC in the reactor when treating vinasses at 22.3 kg COD/m3 day. The volumetric methane level produced in the digester reached 0.45 m3/m3 day. After an operating period of 120 days, the reactor was fed with cutting oil wastewater (COW) as the only source of carbon. An OLR of 16.7 kg COD/m3 day was achieved with 85.8% COD removal efficiency (58.1%TOC) in the experimental UAFF reactor. Under these conditions the volumetric methane produced in the digester was negligible.Hence, COW can be removed, if not degraded, by anaerobic treatment in the presence of a biodegradable co-substrate. Wine vinasses degradation creates conditions for non-biological removal of COW constituents. More studies are necessary in order to test the mechanisms of organic removal when biodegradation apparently had ceased. Also, toxicity assays of COW are necessary to evaluate the toxicity to the methanogenic community.  相似文献   

4.
Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527 mA/m2 and 230 mW/m2 in the anode area, respectively, at operation organic loading (OLR) of 0.364 g COD/l.d. At OLR of 0.182 g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475 V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs.  相似文献   

5.
A full-scale jet biogas internal loop anaerobic fluidized bed (JBILAFB) reactor, which requires low energy input and allows enhanced mass transfer, was constructed for the treatment of food processing wastewater. This reactor has an active volume of 798 m3 and can treat 33.3 m3 wastewater per hour. After pre-treating the raw wastewater by settling, oil separating and coagulation-air floating processes, the reactor was operated with a relatively shorter start-up time (55 days). Samples for the influent and effluent of the JBILAFB reactor were taken and analyzed daily for the whole process including both the start-up and stable running periods. When the volumetric COD loading fluctuated in the range of 1.6–5.6 kg COD m−3 day−1, the COD removal efficiency, the volatile fatty acid(VFA)/alkalinity ratio, the maximum biogas production and the content of CH4 in total biogas of the reactor were found to be 80.1 ± 5%, 0.2–0.5, 348.5 mday−1 and 94.5 ± 2.5%, respectively. Furthermore, the scanning electron microscope (SEM) results showed that anaerobic granular sludge and microorganism particles with biofilm coexisted in the reactor, and that the bacteria mainly in bacilli and cocci were observed as predominant species. All the data demonstrated that the enhanced mass transfer for gas, liquid and solid phases was achieved, and that the formation of microorganism granules and the removal of inhibitors increased the stability of the system.  相似文献   

6.
The performance of an intermittently aerated sequencing batch reactor (IASBR) technology was investigated in achieving partial nitrification, organic matter removal and nitrogen removal from separated digestate liquid after anaerobic digestion of pig manure. The wastewater had chemical oxygen demand (COD) concentrations of 11,540 ± 860 mg/L, 5-day biochemical oxygen demand (BOD5) concentrations of 2,900 ± 200 mg/L and total nitrogen (TN) concentrations of 4,041 ± 59 mg/L, with low COD:N ratios (2.9) and BOD5:COD ratios (0.25). Synthetic wastewater, simulating the separated digestate liquid with similar COD and nitrogen concentrations but BOD5 of 11,500 ± 100 mg/L, was also treated using the IASBR technology. At a mean organic loading rate of 1.15 kg COD/(m3 d) and a nitrogen loading rate of 0.38 kg N/(m3 d), the COD removal efficiency was 89.8% in the IASBR (IASBR-1) treating digestate liquid and 99% in the IASBR (IASBR-2) treating synthetic wastewater. The IASBR-1 effluent COD was mainly due to inert organic matter and can be further reduced to less than 40 mg/L through coagulation. The partial nitrification efficiency of 71–79% was achieved in the two IASBRs and one cause for the stable long-term partial nitrification was the intermittent aeration strategy. Nitrogen removal efficiencies were 76.5 and 97% in IASBR-1 and IASBR-2, respectively. The high nitrogen removal efficiencies show that the IASBR technology is a promising technology for nitrogen removal from low COD:N ratio wastewaters. The nitrogen balance analysis shows that 59.4 and 74.3% of nitrogen removed was via heterotrophic denitrification in the non-aeration periods in IASBR-1 and IASBR-2, respectively.  相似文献   

7.
Performance and Microbial Structure of a Combined Biofilm Reactor   总被引:2,自引:0,他引:2  
A novel combined biofilm reactor was established and applied as a single treatment unit for carbon and nitrogen removal of wastewater. The nitrogen removal performance of the reactor at different levels of organic carbon (COD) loading was investigated when the influent total nitrogen (TN) loading was 0.74 g TN/m2 day. Continuous experimental results demonstrated that 80% nitrogen was eliminated when the influent COD loading ranged between 2.06 g and 3.92 g COD/m2 day. Microbial composition in the reactor was analyzed using fluorescent in situ hybridization (FISH) and conventional batch tests. The relative abundance of ammonia-oxidizing bacteria in the aerobic zone of the reactor measured by FISH was consistent with the result from conventional batch tests.  相似文献   

8.
In this study, combination of a partial nitritation reactor, using immobilized polyethylene glycol (PEG) gel carriers, and a continuous stirred granular anammox reactor was investigated for nitrogen removal from livestock manure digester liquor. Successful nitrite accumulation in the partial nitritation reactor was observed as the nitrite production rate reached 2.1 kg-N/m3/day under aerobic nitrogen loading rate of 3.8 kg-N/m3/day. Simultaneously, relatively high free ammonia concentrations (average 50 mg-NH3/l) depressed the activity of nitrite oxidizing bacteria with nitrate concentration never exceeding 3% of TN concentration in the effluent of the partial nitritation reactor (maximum 35.2 mg/l). High nitrogen removal rates were achieved in the granular anammox reactor with the highest removal rate being 3.12 kg-N/m3/day under anaerobic nitrogen loading rate of 4.1 kg-N/m3/day. Recalcitrant organic compounds in the digester liquor did not impair anammox reaction and the SS accumulation in the granular anammox reactor was minimal. The results of this study demonstrated that partial nitritation–anammox combination has the potential to successfully remove nitrogen from livestock manure digester liquor.  相似文献   

9.
In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m3/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m3/day at a nitrogen loading rate of 1.0 kg-N/m3/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m3/day at a nitrogen loading rate of 0.93 kg-N/m3/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5–6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.  相似文献   

10.
Treatment of simulated acid azo dye (C.I. Acid black 210) wastewater was studied in periodic discontinuous batch mode operation employing sequencing batch reactor (SBR) with suspended growth configuration under anoxic–aerobic–anoxic microenvironment. The performance of the reactor was evaluated at two organic loading rates (0.56 kg COD/m3-day and 0.75 kg COD/m3-day) with a total cycle period of 24 h [fill phase: 30 min; react phase: 23 h; settle phase: 15 min; decant phase: 15 min] at room temperature. The performance of SBR was assessed by monitoring both COD and colour (OD-617 nm) concentrations. Periodic discontinuous batch mode operation feasibility for dye colour removal along with simultaneous substrate (COD) removal. The performance efficiency of the system was found to depend on the operating organic loading rate. Induced anoxic microenvironment during cycle operation and persistent anoxic microenvironment in the internal layer of suspended biomass may be probable reasons for dye mineralization/reduction. Rapid startup period and non-inhibited performance at higher loading rate are some of the advantages observed in the SBR operation.  相似文献   

11.
The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22–35 °C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT’s) of 13.3, 10 and 5.0 h. An overall reduction of 80–86% for CODtotal; 51–73% for CODcolloidal and 20–55% for CODsoluble was found at a total HRT of 5–10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of CODtotal, CODcolloidal and CODsoluble increased up to 92, 89 and 80%, respectively. However, the removal efficiency of CODsuspended in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of CODsuspended was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m−2 day−1. The removal efficiency was decreased by a value of 34 and 43% at a higher OLR’s of 7.4 and 17.8 g COD m−2 day−1, respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 × 104 MPN per 100 ml at a HRT of 13.3 h, 4.9 × 105 MPN per 100 ml at a HRT of 10 h and 9.4 × 105 MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log10 reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB–MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB–MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.  相似文献   

12.
A two-stage lab-scale UASB reactor, incorporating a selector-type UASB prior to the main reactor was operated at 37 °C with an easily biodegradable food wastewater having a COD of 3,000 mg/L. Varying the hydraulic retention time from 25 to 5 h, the removal of COD by the two-stage process was higher than 95%. Effluent soluble COD was consistently below 75 mg/L and the methane production rate close to theoretical values. The selector UASB removed the majority of the organic load (70–90%) at high organic loading rate, i.e. between 6 and 30 g/(Ld) and the granular sludge developed was characterized by dense microbial colonies, high volatile suspended solids’ content and high substrate degradation efficiency. Design of a two-stage process, incorporating a selector and a second UASB reactor, was able to achieve stable and complete substrate degradation at overall loading rates of the order of ~10–15 g/(Ld).  相似文献   

13.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

14.
Biodegradation of an aldehyde biocide, glutaraldehyde (GA), in a single-stage laboratory-scale rotating biological contactor (RBC) was studied under biocide or organic loadings (OL) of 12–66 g COD m−2 day−1 and hydraulic retention times (HRT) of 0.6–3.0 h. Biofilms on the RBC were acclimated in 180 ppm GA at a hydraulic loading (HL) of 0.18 m3 m−2 day−1 and the HRT of 0.60 h. The results showed that under a constant initial chemical oxygen demand (COD) concentration and sufficient mineral salts available, the degree of GA removal in the RBC system was increased with either decreasing OL or increasing HRT. After a period of acclimation, treatment efficiency in terms of GA removal by the RBC receiving GA as a sole carbon source was 89%. The biofilms played an important role in biodegradation of biocide in the RBCs, whereas bio-oxidation of their planktonic counterparts was totally inhibited in the presence of 50 ppm GA. The biochemical oxygen demand (BOD) test could be used as an appropriate analytical procedure for investigating the efficiency of wastewater treatment units when seed was acclimated and had adequate amount.  相似文献   

15.
A laboratory-scale multistage anaerobic biofilm reactor of three compartments with a working volume of 54-L was used for treating a synthetic medium-strength wastewater containing molasses as a carbon source at different influent conditions. The start-up period, stability and performance of this reactor were assessed at mesophilic temperature (35 °C). During the start-up period, pH fluctuations were observed because there was no microbial selection or zoning, but as the experiment progressed, results showed that phase separation had occurred inside the reactor. COD removal percentages of 91.6, 91.6, 90.0 and 88.3 were achieved at organic loading rates of 3.0, 4.5, 6.75 and 9.0 kg COD/m3 day, respectively. A decrease in HRT from 24 to 16 h had no effect on COD removal efficiency. When HRT decreased to 8 h, COD removal efficiency was still 84.9%. Recirculation ratios of 0.5 and 1.0 had no effect on COD removal but other factors such as the volatile fatty acid (VFA) content were affected. The effect of toxic shock was also investigated and results showed that the main advantage of using this bioreactor lies in its compartmentalized structure.  相似文献   

16.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

17.
《Ecological Engineering》2006,26(3):266-271
Water supplies in the Middle East arid climate are a scarce commodity making treated wastewater an economically attractive source for increasing the limited existing water resources for agricultural purposes. In order to minimize water losses with the corresponding increased salinity and to reduce land demand, an integrated system based mainly on high-rate semi-intensive treatment units is being tested and demonstrated. The units include an upflow anaerobic sludge blanket (UASB) reactor and vertical and horizontal flow wetlands. The units are characterized by simple and low-cost maintenance with minimal energy input. Three years of pilot plant results from the combined system are presented in this paper. The results show a high organic removal rate for the combined system: 140 g COD/m2/day for the scheme, which included a UASB reactor followed by two PAVB units and subsurface horizontal flow CW. Even higher rates of 900 g COD/m2/day were achieved for the same scheme by replacing the final CWL with another PAVB unit. These high rates allow for a small treatment plant footprint equivalent to 0.13–0.9 m2 per person, assuming 125 g COD per person per day.  相似文献   

18.
《Anaerobe》2001,7(1):25-35
This paper describes the thermophilic anaerobic biodegradation of wine distillery wastewater (vinasses) in a laboratory fluidised bed reactor (AFB) with a porous support medium. The experimental protocol was defined to examine the effect of increasing organic loading rate on the efficiency of AFB and to report on its steady-state performance. Moreover, in order to evaluate treatment efficiency and to investigate fermentation kinetics in an AFB reactor, experimental data were used to estimate the ‘active biomass’ concentration using an autocatalytic kinetic model proposed in this paper, since viable biomass in AFB reactors is very difficult to measure experimentally. The AFB reactor was subjected to a program of steady-state operation over a range of hydraulic retention time (HRTs) of 2.5–0.37 days and organic loading rate (OLRs) up to 5.88 kgCOD/m3/day in order to evaluate its treatment capacity. The AFB reactor was initially operated with organic loading rate of 5.88 kgCOD/m3/day and HRT of 2.5 days. The chemical oxygen demand (COD) removal efficiency was found to be 96.5% in the reactor while the methane content of biogas produced in the digester reached 1.08 m3/m3digester/day. Over 94 days operating period, an OLR of 32 kgCOD/m3/day at a food-to-micro-organisms (F:M) ratio of 0.55 kgCOD/kgVSatt/day was achieved with 81.5% COD removal efficiency in the experimental AFB reactor. At this moment, the methane content of biogas produced in the digester reached 9.0 m3/m3digester/day. The proposed kinetic model is able to estimate kinetic constants of the biodegradation process: non-biodegradable substrate (Snb) and active adhered biomass concentration (Xa). The parameters of the model were obtained by the curve-fitting method to the proposed kinetic model using the COD as substrate of the anaerobic process and assuming a maximum specific μmax: 0.72 per day. The comparison of the measured concentration of volatile attached solids (VSatt) with the estimated ‘active’ biomass concentration indicated that extremely high ‘active biomass’ concentrations can be maintained in the system because biofilm thickness is limited by the liquid flow rate applied. This is due to the fact that the anaerobic fluidised bed system retains the growth support medium in suspension by drag forces exerted by upflowing wastewater, and the distribution of biomass holdup (in the form of a biofilm) is thus relatively uniform.  相似文献   

19.
The catalytically oxidized olive mill wastewater (OMW) was subjected to continuous anaerobic treatment using two treatment schemes. The 1st step in both schemes was an up-flow anaerobic sludge blanket (UASB) reactor (2 0 l). The 2nd step was either a hybrid UASB reactor or a classical one (1 0 l, each). The 1st stage was operated at constant hydraulic retention time (HRT) of 24 h. The organic loading rate (OLR) varied from 3.4 to 4.8 kgCOD/m3 d depending on the quality of the pretreated wastewater. The results obtained indicated that, the 1st step UASB reactor achieved a COD percentage removal value of 53.9%. Corresponding total BOD5 and TSS removal were 51.5% and 68.3%, respectively.The results obtained indicated that the hybrid UASB reactor as a 2nd step produced better quality effluent as compared to the classical one. This could be attributed to the presence of the packing curtain sponge with active biomass in the sedimentation part of hybrid UASB reactor which minimizes suspended solids washout, consequently enhancement of the efficiency of the reactor.Available data showed that a two stage system consisting of a classical and a hybrid UASB reactor operated at a total HRT of 48 h and OLR of 2.0 kgCOD/m3 d provided promising results. Removal values of CODtotal, BOD5 total, TOC, VFA, oil and grease were 83%, 84%, 81%, 93% and 81%, respectively. Based on the available data, the use of a two stage anaerobic system consisting of a classical UASB reactor followed by a hybrid UASB as a post-treatment step for catalytically oxidized OMW is recommended.  相似文献   

20.
A pilot scale experiment was performed for a year to develop a two-phase anaerobic process for piggery wastewater treatment (COD: 6,000 mg/L, BOD: 4,000 mg/L, SS: 500 gm/L, pH 8.4, alkalinity 6,000 mg/L). The acidogenic reactor had a total volume of 3 m3, and the methanogenic reactor, an, anaerobic up-flow sludge filter, combining a filter and a sludge bed, was also of total volume 3 m3 (1.5 m3 of upper packing material). Temperatures of the acidogenic and methanogenic reactors kept at 20°C and 35°C., respectively. When the pH of the acidogenic reactor was controlled at 6.0–7.0 with HCl, the COD removal efficiency increased from 50 to 80% over a period of six months, and as a result, the COD of the final effluent fell in the range of 1,000–1,500 mg/L. BOD removal efficiency over the same period was above 90%, and 300 to 400 mg/L was maintained in the final effluent. The average SS in the final effluent was 270 mg/L. The methane production was 0.32 m3 CH4/kg CODremoved and methane content of the methanogenic reactor was high value at 80–90%., When the pH of the acidogenic reactor was not controlled over the final two months, the pH reached 8.2 and acid conversion decreased compared with that of pH controlled, while COD removal was similar to the pH controlled operation. Without pH control, the methane content in the gas from methanogenic reactor improved to 90%, compared to 80% with pH control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号