首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses.  相似文献   

2.
3.
Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to its economic relevance, is the subject of increasing research in genetics and biotechnology, in which gene expression analysis is one of the most important fields. Notwithstanding, relatively few works have focused on the analysis of gene expression in coffee. Moreover, most of these works have used less accurate techniques such as northern blot assays instead of more accurate techniques (e.g., qPCR) that have already been extensively used in other plant species. Aiming to boost the use of qPCR in studies of gene expression in coffee, we uncovered reference genes to be used in a number of different experimental conditions. Using two distinct algorithms implemented by geNorm and Norm Finder, we evaluated a total of eight candidate reference genes (psaB, PP2A, AP47, S24, GAPDH, rpl39, UBQ10, and UBI9) in four different experimental sets (control versus drought-stressed leaves, control versus drought-stressed roots, leaves of three different coffee cultivars, and four different coffee organs). The most suitable combination of reference genes was indicated in each experimental set for use as internal control for reliable qPCR data normalization. This study also provides useful guidelines for reference gene selection for researchers working with coffee plant samples under conditions other than those tested here. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
6.
7.
8.
The real-time polymerase chain reaction (PCR) data requires normalization with an internal control gene expressed at constant levels under all the experimental conditions being analyzed for accurate and reliable gene expression results. In this study, the expression of 12 candidate internal control genes, including ACT1, EF1α, GAPDH, IF4a, TUB6, UBC, UBQ5, UBQ10, 18SrRNA, 25SrRNA, GRX and HSP90, in a diverse set of 18 tissue samples representing different organs/developmental stages and stress conditions in chickpea (Cicer arietinum L.) has been validated. Their expression levels vary considerably in various tissue samples analyzed. The expression levels of EF1α and HSP90 are most constant across various organs/developmental stages analyzed. Similarly, the expression levels of IF4a and GAPDH are most constant across various stress conditions. A set of two most stable genes is found sufficient for accurate and reliable normalization of real-time PCR data in the given set of tissue samples of chickpea. The genes with most constant expression identified in this study should be useful for normalization of gene expression data in a wide variety of tissue samples in chickpea.  相似文献   

9.
Lactobacillus casei Zhang, a potential probiotic strain isolated from homemade koumiss in Inner Mongolia of China, has been sequenced and deposited in GenBank. Real-time quantitative PCR is one of the most widely used methods to study related gene expression levels of Lactobacillus casei Zhang. For accurate and reliable gene expression analysis, normalization of gene expression data using one or more appropriate reference genes is essential. We used three statistical methods (geNorm, NormFinder, and BestKeeper) to evaluate the expression levels of five candidate reference genes (GAPD, gyrB, LDH, 16s rRNA, and recA) under different culture conditions and different growth phases to find a suitable housekeeping gene which can be used as internal standard. The results showed that the best reference gene was GAPD, and a set of two genes, GAPD and gyrB (which were the most stable reference genes), is recommended for normalization of real-time quantitative PCR experiments under all the different experimental conditions tested. The systematic validation of candidate reference genes is important for obtaining reliable analysis results of real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang.  相似文献   

10.

Background  

Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative receptor tyrosine kinase genes FLT3, CSF1-R, PDGFRB, AXL and MET by qPCR. wt-GIST were compared to samples with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these alternative RTK might contribute to the pathogenesis of wt-GIST.  相似文献   

11.
12.
13.

Background  

Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae.  相似文献   

14.
15.
Reliable reference genes are critical for relative quantification using quantitative real‐time PCR (qPCR). Ten tomato genes (Solanum lycopersicum) and their respective primer sets, which have been used over the last 6 years as references in expression studies, were evaluated for their performance using leaf tissue samples grown under semi‐controlled conditions and infected with grey mould (Botrytis cinerea) or late blight (Phytophthora infestans). The target genes coding for U6 snRNA‐associated Sm‐like protein LSm7, calcineurin B‐like protein and V‐type proton ATPase were the most stable expressed of all the genes tested in three experimental repetitions. Evaluation of candidate reference genes with geNorm and NormFinder softwares yielded the lowest mean values for their respective primer sets LSM7, SlCBL1 and SlATPase, suggesting stable expression. However, SlATPase primer set revealed a comparably high intra‐group variation and was thus not considered further. In follow‐up experiments with P. infestans, the geNorm and NormFinder values of primer sets LSM7 and SlCBL1 were even lower, indicating the stability of their expression also under these conditions. Primer efficiency differed by ‐18 to +5 percentage points from values presented in the literature. Our findings show that a reference primer set which delivers the best results in one system may be outperformed by another under different experimental conditions, thus recommending a reassessment of both expression stability and qPCR efficiency whenever the biological or technical experimental set‐up is changed. On the basis of our results, we recommend the use of LSM7 and SlCBL1 as reference primer sets for gene expression studies on plant tissue derived from open or semi‐controlled conditions.  相似文献   

16.
Faba bean (Vicia faba L.) cultivation has declined in recent years due to several factors, including diseases and anti-nutritional compounds in the seeds. The introduction of disease resistance and the elimination of anti-nutritional factors in new varieties are important objectives in any breeding program for the species. Because of the faba bean’s huge genome, it is necessary to rely on synteny with related species in order to identify candidate genes responsible for the character under study. Quantification of expression level of candidate genes could help to validate them. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression level. Real-time quantitative PCR was used for evaluate the expression stability of 11 candidate reference genes. A wide set of samples, including different tissues, genotypes and several inoculations for the most important pathogens were employed. The expression stability of the candidate genes was analyzed using two different algorithms, geNorm and NormFinder, and results obtained from both algorithms were highly correlated for each experimental set. In all cases, either ACT1, CYP2 or ELF1A genes performed as the most stable genes in our experimental sets. They also represent part of the best combination of genes according to the geNorm and NormFinder algorithms. Our data showed the wide expression range of the selected genes, confirming that no single reference gene had a stable expression under these conditions in the faba bean. We recommend the use of ACT1, CYP2 and ELF1A as the most suitable reference genes to normalize gene expression for future studies in V. faba.  相似文献   

17.

Pomegranate (Punica granatum L.) is an important economic fruit crop, facing many biotic and abiotic challenges during cultivation. Several research programs are in progress to understand both biotic and abiotic stress factors and mitigate these challenges using gene expression studies based on the qPCR approach. However, research publications are not available yet to select the standard reference gene for normalizing target gene expression values in pomegranate. The most suitable candidate reference gene is required to ensure precise and reliable results for qPCR analysis. Eight candidate reference genes' stability was evaluated under different stress conditions using different algorithms such as ?Ct, geNorm, BestKeeper, NormFinder, and RefFinder. The various algorithms revealed that EFA1 and 18S rRNA were common and most stable reference genes (RGs) under abiotic and wilt stress. Whereas comprehensive ranking by RefFinder showed GAPDH and CYPF were the most stable RGs under combined biotic (pooled samples of all biotic stress) and bacterial blight samples. For normalizing target gene expression under wilt, nematode, bacterial blight, and abiotic stress conditions both GAPDH and CYPFreference genes are adequate for qPCR. The above data provide comprehensive details for the selection of a candidate reference gene in various stresses in pomegranate

  相似文献   

18.
19.
为筛选红掌(Anthurium andraeanumLinden)中稳定表达、可用于佛焰苞中实时荧光定量PCR分析(qRT-PCR)的内参基因,对5个组成型表达基因EF1-a、UBQ7、ACTB、GADPH、His3进行表达稳定性分析,并利用所筛选的内参基因研究红掌的二氢黄酮醇还原酶基因(dfr)的表达水平。结果表明,5种内参基因在不同品种间的表达稳定性不同。据内参基因标准化因子的配对差异分析(Vn/n+1),判定内参基因的最适数目为2,ACTB和UBQ7在红掌不同品种及佛焰苞发育不同阶段中表达均稳定,是理想的内参基因。dfr在不同品种的佛焰苞及佛焰苞发育过程中均有表达,且dfr表达水平的变化趋势一致,因此,所选内参基因是合适的。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号