首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonsynonymous (amino acid-altering) to synonymous (silent) substitution rate ratio (omega = d(N)/d(S)) provides a measure of natural selection at the protein level, with omega = 1, >1, and <1, indicating neutral evolution, purifying selection, and positive selection, respectively. Previous studies that used this measure to detect positive selection have often taken an approach of pairwise comparison, estimating substitution rates by averaging over all sites in the protein. As most amino acids in a functional protein are under structural and functional constraints and adaptive evolution probably affects only a few sites at a few time points, this approach of averaging rates over sites and over time has little power. Previously, we developed codon-based substitution models that allow the omega ratio to vary either among lineages or among sites. In this paper we extend previous models to allow the omega ratio to vary both among sites and among lineages and implement the new models in the likelihood framework. These models may be useful for identifying positive selection along prespecified lineages that affects only a few sites in the protein. We apply those branch-site models as well as previous branch- and site-specific models to three data sets: the lysozyme genes from primates, the tumor suppressor BRCA1 genes from primates, and the phytochrome (PHY) gene family in angiosperms. Positive selection is detected in the lysozyme and BRCA genes by both the new and the old models. However, only the new models detected positive selection acting on lineages after gene duplication in the PHY gene family. Additional tests on several data sets suggest that the new models may be useful in detecting positive selection after gene duplication in gene family evolution.  相似文献   

2.
A method for detecting positive selection at single amino acid sites   总被引:23,自引:0,他引:23  
A method was developed for detecting the selective force at single amino acid sites given a multiple alignment of protein-coding sequences. The phylogenetic tree was reconstructed using the number of synonymous substitutions. Then, the neutrality was tested for each codon site using the numbers of synonymous and nonsynonymous changes throughout the phylogenetic tree. Computer simulation showed that this method accurately estimated the numbers of synonymous and nonsynonymous substitutions per site, as long as the substitution number on each branch was relatively small. The false-positive rate for detecting the selective force was generally low. On the other hand, the true-positive rate for detecting the selective force depended on the parameter values. Within the range of parameter values used in the simulation, the true-positive rate increased as the strength of the selective force and the total branch length (namely the total number of synonymous substitutions per site) in the phylogenetic tree increased. In particular, with the relative rate of nonsynonymous substitutions to synonymous substitutions being 5.0, most of the positively selected codon sites were correctly detected when the total branch length in the phylogenetic tree was > or = 2.5. When this method was applied to the human leukocyte antigen (HLA) gene, which included antigen recognition sites (ARSs), positive selection was detected mainly on ARSs. This finding confirmed the effectiveness of the present method with actual data. Moreover, two amino acid sites were newly identified as positively selected in non-ARSs. The three-dimensional structure of the HLA molecule indicated that these sites might be involved in antigen recognition. Positively selected amino acid sites were also identified in the envelope protein of human immunodeficiency virus and the influenza virus hemagglutinin protein. This method may be helpful for predicting functions of amino acid sites in proteins, especially in the present situation, in which sequence data are accumulating at an enormous speed.  相似文献   

3.
ADAPTSITE: detecting natural selection at single amino acid sites.   总被引:12,自引:0,他引:12  
ADAPTSITE is a program package for detecting natural selection at single amino acid sites, using a multiple alignment of protein-coding sequences for a given phylogenetic tree. The program infers ancestral codons at all interior nodes, and computes the total numbers of synonymous (c(S)) and nonsynonymous (c(N)) substitutions as well as the average numbers of synonymous (s(S)) and nonsynonymous (s(N)) sites for each codon site. The probabilities of occurrence of synonymous and nonsynonymous substitutions are approximated by s(S) / (s(S) + s(N)) and s(N) / (s(S) + s(N)), respectively. The null hypothesis of selective neutrality is tested for each codon site, assuming a binomial distribution for the probability of obtaining c(S) and c(N). AVAILABILITY: ADAPTSITE is available free of charge at the World-Wide Web sites http://mep.bio.psu.edu/adaptivevol.html and http://www.cib.nig.ac.jp/dda/yossuzuk/welcome.html. The package includes the source code written in C, binary files for UNIX operating systems, manual, and example files.  相似文献   

4.
Massingham T  Goldman N 《Genetics》2005,169(3):1753-1762
An excess of nonsynonymous over synonymous substitution at individual amino acid sites is an important indicator that positive selection has affected the evolution of a protein between the extant sequences under study and their most recent common ancestor. Several methods exist to detect the presence, and sometimes location, of positively selected sites in alignments of protein-coding sequences. This article describes the "sitewise likelihood-ratio" (SLR) method for detecting nonneutral evolution, a statistical test that can identify sites that are unusually conserved as well as those that are unusually variable. We show that the SLR method can be more powerful than currently published methods for detecting the location of positive selection, especially in difficult cases where the strength of selection is low. The increase in power is achieved while relaxing assumptions about how the strength of selection varies over sites and without elevated rates of false-positive results that have been reported with some other methods. We also show that the SLR method performs well even under circumstances where the results from some previous methods can be misleading.  相似文献   

5.
The nonsynonymous to synonymous substitution rate ratio (omega = d(N)/d(S)) provides a sensitive measure of selective pressure at the protein level, with omega values <1, =1, and >1 indicating purifying selection, neutral evolution, and diversifying selection, respectively. Maximum likelihood models of codon substitution developed recently account for variable selective pressures among amino acid sites by employing a statistical distribution for the omega ratio among sites. Those models, called random-sites models, are suitable when we do not know a priori which sites are under what kind of selective pressure. Sometimes prior information (such as the tertiary structure of the protein) might be available to partition sites in the protein into different classes, which are expected to be under different selective pressures. It is then sensible to use such information in the model. In this paper, we implement maximum likelihood models for prepartitioned data sets, which account for the heterogeneity among site partitions by using different omega parameters for the partitions. The models, referred to as fixed-sites models, are also useful for combined analysis of multiple genes from the same set of species. We apply the models to data sets of the major histocompatibility complex (MHC) class I alleles from human populations and of the abalone sperm lysin genes. Structural information is used to partition sites in MHC into two classes: those in the antigen recognition site (ARS) and those outside. Positive selection is detected in the ARS by the fixed-sites models. Similarly, sites in lysin are classified into the buried and solvent-exposed classes according to the tertiary structure, and positive selection was detected at the solvent-exposed sites. The random-sites models identified a number of sites under positive selection in each data set, confirming and elaborating the results of the fixed-sites models. The analysis demonstrates the utility of the fixed-sites models, as well as the power of previous random-sites models, which do not use the prior information to partition sites.  相似文献   

6.
The reliabilities of parsimony-based and likelihood-based methods for inferring positive selection at single amino acid sites were studied using the nucleotide sequences of human leukocyte antigen (HLA) genes, in which positive selection is known to be operating at the antigen recognition site. The results indicate that the inference by parsimony-based methods is robust to the use of different evolutionary models and generally more reliable than that by likelihood-based methods. In contrast, the results obtained by likelihood-based methods depend on the models and on the initial parameter values used. It is sometimes difficult to obtain the maximum likelihood estimates of parameters for a given model, and the results obtained may be false negatives or false positives depending on the initial parameter values. It is therefore preferable to use parsimony-based methods as long as the number of sequences is relatively large and the branch lengths of the phylogenetic tree are relatively small.  相似文献   

7.
Natural selection operating on amino acid substitution at single amino acid sites can be detected by comparing the rates of synonymous (r(S)) and nonsynonymous (r(N)) nucleotide substitution at single codon sites. Amino acid substitutions can be classified as conservative or radical according to whether they retain the properties of the substituted amino acid. Here methods for comparing the rates of conservative (r(C)) and radical (r(R)) nonsynonymous substitution with r(S) at single codon sites were developed to detect natural selection operating on these substitutions at single amino acid sites. A method for comparing r(C) and r(R) at single codon sites was also developed to detect biases toward these substitutions at single amino acid sites. Charge was used as the property of the amino acids. In a computer simulation, false-positive rates of these methods were always < 5%, unless termination sites were included in the computation of the numbers of sites and estimates of transition/transversion rate ratio were highly biased. The frequency of detection of natural selection operating on conservative substitution was almost independent of the presence of natural selection operating on radical substitution, and vice versa. Natural selection operating specifically on conservative and radical substitution was detected more efficiently by comparing r(S) with r(C) and r(S) with r(R) than by comparing r(S) with r(N). These methods also appeared to be robust against the occurrence of recombination during evolution. In an analysis of class I human leukocyte antigen, negative selection operating on conservative substitution, but not positive selection operating on radical substitution, was observed at some of the codon sites with r(R) > r(C), suggesting that r(R) > r(C) may not necessarily be an indicator of positive selection operating on radical substitution.  相似文献   

8.
Anisimova M  Nielsen R  Yang Z 《Genetics》2003,164(3):1229-1236
Maximum-likelihood methods based on models of codon substitution accounting for heterogeneous selective pressures across sites have proved to be powerful in detecting positive selection in protein-coding DNA sequences. Those methods are phylogeny based and do not account for the effects of recombination. When recombination occurs, such as in population data, no unique tree topology can describe the evolutionary history of the whole sequence. This violation of assumptions raises serious concerns about the likelihood method for detecting positive selection. Here we use computer simulation to evaluate the reliability of the likelihood-ratio test (LRT) for positive selection in the presence of recombination. We examine three tests based on different models of variable selective pressures among sites. Sequences are simulated using a coalescent model with recombination and analyzed using codon-based likelihood models ignoring recombination. We find that the LRT is robust to low levels of recombination (with fewer than three recombination events in the history of a sample of 10 sequences). However, at higher levels of recombination, the type I error rate can be as high as 90%, especially when the null model in the LRT is unrealistic, and the test often mistakes recombination as evidence for positive selection. The test that compares the more realistic models M7 (beta) against M8 (beta and omega) is more robust to recombination, where the null model M7 allows the positive selection pressure to vary between 0 and 1 (and so does not account for positive selection), and the alternative model M8 allows an additional discrete class with omega = d(N)/d(S) that could be estimated to be >1 (and thus accounts for positive selection). Identification of sites under positive selection by the empirical Bayes method appears to be less affected than the LRT by recombination.  相似文献   

9.
Codon-based substitution models have been widely used to identify amino acid sites under positive selection in comparative analysis of protein-coding DNA sequences. The nonsynonymous-synonymous substitution rate ratio (d(N)/d(S), denoted omega) is used as a measure of selective pressure at the protein level, with omega > 1 indicating positive selection. Statistical distributions are used to model the variation in omega among sites, allowing a subset of sites to have omega > 1 while the rest of the sequence may be under purifying selection with omega < 1. An empirical Bayes (EB) approach is then used to calculate posterior probabilities that a site comes from the site class with omega > 1. Current implementations, however, use the naive EB (NEB) approach and fail to account for sampling errors in maximum likelihood estimates of model parameters, such as the proportions and omega ratios for the site classes. In small data sets lacking information, this approach may lead to unreliable posterior probability calculations. In this paper, we develop a Bayes empirical Bayes (BEB) approach to the problem, which assigns a prior to the model parameters and integrates over their uncertainties. We compare the new and old methods on real and simulated data sets. The results suggest that in small data sets the new BEB method does not generate false positives as did the old NEB approach, while in large data sets it retains the good power of the NEB approach for inferring positively selected sites.  相似文献   

10.
Inferring positive selection at single amino acid sites is of biological and medical importance. Parsimony-based and likelihood-based methods have been developed for this purpose, but the reliabilities of these methods are not well understood. Because the evolutionary models assumed in these methods are only rough approximations to reality, it is desirable that the methods are not very sensitive to violation of the assumptions made. In this study we show by computer simulation that the likelihood-based method is sensitive to violation of the assumptions and produces many false-positive results under certain conditions, whereas the parsimony-based method tends to be conservative. These observations, together with those from previous studies, suggest that the positively selected sites inferred by the parsimony-based method are more reliable than those inferred by the likelihood-based method.  相似文献   

11.
Bayes prediction quantifies uncertainty by assigning posterior probabilities. It was used to identify amino acids in a protein under recurrent diversifying selection indicated by higher nonsynonymous (d(N)) than synonymous (d(S)) substitution rates or by omega = d(N)/d(S) > 1. Parameters were estimated by maximum likelihood under a codon substitution model that assumed several classes of sites with different omega ratios. The Bayes theorem was used to calculate the posterior probabilities of each site falling into these site classes. Here, we evaluate the performance of Bayes prediction of amino acids under positive selection by computer simulation. We measured the accuracy by the proportion of predicted sites that were truly under selection and the power by the proportion of true positively selected sites that were predicted by the method. The accuracy was slightly better for longer sequences, whereas the power was largely unaffected by the increase in sequence length. Both accuracy and power were higher for medium or highly diverged sequences than for similar sequences. We found that accuracy and power were unacceptably low when data contained only a few highly similar sequences. However, sampling a large number of lineages improved the performance substantially. Even for very similar sequences, accuracy and power can be high if over 100 taxa are used in the analysis. We make the following recommendations: (1) prediction of positive selection sites is not feasible for a few closely related sequences; (2) using a large number of lineages is the best way to improve the accuracy and power of the prediction; and (3) multiple models of heterogeneous selective pressures among sites should be applied in real data analysis.  相似文献   

12.
If the enzymes responsible for biosynthesis of a given amino acid are repressed and the cognate amino acid pool suddenly depleted, then derepression of these enzymes and replenishment of the pool would be problematic, if the enzymes were largely composed of the cognate amino acid. In the proverbial "Catch 22", cells would lack the necessary enzymes to make the amino acid, and they would lack the necessary amino acid to make the needed enzymes. Based on this scenario, we hypothesize that evolution would lead to the selection of amino acid biosynthetic enzymes that have a relatively low content of their cognate amino acid. We call this the "cognate bias hypothesis". Here we test several implications of this hypothesis directly using data from the proteome of Escherichia coli. Several lines of evidence show that low cognate bias is evident in 15 of the 20 amino acid biosynthetic pathways. Comparison with closely related Salmonella typhimurium shows similar results. Comparison with more distantly related Bacillus subtilis shows general similarities as well as significant differences in the detailed profiles of cognate bias. Thus, selection for low cognate bias plays a significant role in shaping the amino acid composition for a large class of cellular proteins.  相似文献   

13.
We consider three approaches for estimating the rates of nonsynonymous and synonymous changes at each site in a sequence alignment in order to identify sites under positive or negative selection: (1) a suite of fast likelihood-based "counting methods" that employ either a single most likely ancestral reconstruction, weighting across all possible ancestral reconstructions, or sampling from ancestral reconstructions; (2) a random effects likelihood (REL) approach, which models variation in nonsynonymous and synonymous rates across sites according to a predefined distribution, with the selection pressure at an individual site inferred using an empirical Bayes approach; and (3) a fixed effects likelihood (FEL) method that directly estimates nonsynonymous and synonymous substitution rates at each site. All three methods incorporate flexible models of nucleotide substitution bias and variation in both nonsynonymous and synonymous substitution rates across sites, facilitating the comparison between the methods. We demonstrate that the results obtained using these approaches show broad agreement in levels of Type I and Type II error and in estimates of substitution rates. Counting methods are well suited for large alignments, for which there is high power to detect positive and negative selection, but appear to underestimate the substitution rate. A REL approach, which is more computationally intensive than counting methods, has higher power than counting methods to detect selection in data sets of intermediate size but may suffer from higher rates of false positives for small data sets. A FEL approach appears to capture the pattern of rate variation better than counting methods or random effects models, does not suffer from as many false positives as random effects models for data sets comprising few sequences, and can be efficiently parallelized. Our results suggest that previously reported differences between results obtained by counting methods and random effects models arise due to a combination of the conservative nature of counting-based methods, the failure of current random effects models to allow for variation in synonymous substitution rates, and the naive application of random effects models to extremely sparse data sets. We demonstrate our methods on sequence data from the human immunodeficiency virus type 1 env and pol genes and simulated alignments.  相似文献   

14.
A crucial event in protein folding is the formation of a folding nucleus, which is a structured part of the protein chain in the transition state. We demonstrate a correlation between locations of residues involved in the folding nuclei and locations of predicted amyloidogenic regions. The average Phi-values are significantly greater inside amyloidogenic regions than outside them. We have found that fibril formation and normal folding involve many of the same key residues, giving an opportunity to outline the folding initiation site in protein chains. The search for folding initiation sites for apomyoglobin and ribonuclease. A coincides with the predictions made by other approaches.  相似文献   

15.
R Nielsen  Z Yang 《Genetics》1998,148(3):929-936
Several codon-based models for the evolution of protein-coding DNA sequences are developed that account for varying selection intensity among amino acid sites. The "neutral model" assumes two categories of sites at which amino acid replacements are either neutral or deleterious. The "positive-selection model" assumes an additional category of positively selected sites at which nonsynonymous substitutions occur at a higher rate than synonymous ones. This model is also used to identify target sites for positive selection. The models are applied to a data set of the V3 region of the HIV-1 envelope gene, sequenced at different years after the infection of one patient. The results provide strong support for variable selection intensity among amino acid sites The neutral model is rejected in favor of the positive-selection model, indicating the operation of positive selection in the region. Positively selected sites are found in both the V3 region and the flanking regions.  相似文献   

16.
Amino acid substitution models represent the substitution rates among amino acids during the evolution of protein sequences. The models are a prerequisite for maximum likelihood or Bayesian methods to analyse the phylogenetic relationships among species based on their protein sequences. Estimating amino acid substitution models requires large protein datasets and intensive computation. In this paper, we presented the estimation of both time-reversible model (Q.met) and time non-reversible model (NQ.met) for multicellular animals (Metazoa). Analyses showed that the Q.met and NQ.met models were significantly better than existing models in analysing metazoan protein sequences. Moreover, the time non-reversible model NQ.met enables us to reconstruct the rooted phylogenetic tree for Metazoa. We recommend researchers to employ the Q.met and NQ.met models in analysing metazoan protein sequences.  相似文献   

17.
18.

Background  

The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization). Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi) genes.  相似文献   

19.
Payseur BA  Nachman MW 《Gene》2002,300(1-2):31-42
Theoretical and empirical work indicates that patterns of neutral polymorphism can be affected by linked, selected mutations. Under background selection, deleterious mutations removed from a population by purifying selection cause a reduction in linked neutral diversity. Under genetic hitchhiking, the rise in frequency and fixation of beneficial mutations also reduces the level of linked neutral polymorphism. Here we review the evidence that levels of neutral polymorphism in humans are affected by selection at linked sites. We then discuss four approaches for distinguishing between background selection and genetic hitchhiking based on (i) the relationship between polymorphism level and recombination rate for neutral loci with high mutation rates, (ii) relative levels of variation on the X chromosome and the autosomes, (iii) the frequency distribution of neutral polymorphisms, and (iv) population-specific patterns of genetic variation. Although the evidence for selection at linked sites in humans is clear, current methods and data do not allow us to clearly assess the relative importance of background selection and genetic hitchhiking in humans. These results contrast with those obtained for Drosophila, where the signals of positive selection are stronger.  相似文献   

20.
Models of amino acid substitution present challenges beyond those often faced with the analysis of DNA sequences. The alignments of amino acid sequences are often small, whereas the number of parameters to be estimated is potentially large when compared with the number of free parameters for nucleotide substitution models. Most approaches to the analysis of amino acid alignments have focused on the use of fixed amino acid models in which all of the potentially free parameters are fixed to values estimated from a large number of sequences. Often, these fixed amino acid models are specific to a gene or taxonomic group (e.g. the Mtmam model, which has parameters that are specific to mammalian mitochondrial gene sequences). Although the fixed amino acid models succeed in reducing the number of free parameters to be estimated--indeed, they reduce the number of free parameters from approximately 200 to 0--it is possible that none of the currently available fixed amino acid models is appropriate for a specific alignment. Here, we present four approaches to the analysis of amino acid sequences. First, we explore the use of a general time reversible model of amino acid substitution using a Dirichlet prior probability distribution on the 190 exchangeability parameters. Second, we then explore the behaviour of prior probability distributions that are'centred' on the rates specified by the fixed amino acid model. Third, we consider a mixture of fixed amino acid models. Finally, we consider constraints on the exchangeability parameters as partitions,similar to how nucleotide substitution models are specified, and place a Dirichlet process prior model on all the possible partitioning schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号