首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We model metapopulation dynamics in finite networks of discrete habitat patches with given areas and spatial locations. We define and analyze two simple and ecologically intuitive measures of the capacity of the habitat patch network to support a viable metapopulation. Metapopulation persistence capacity lambda(M) defines the threshold condition for long-term metapopulation persistence as lambda(M)>delta, where delta is defined by the extinction and colonization rate parameters of the focal species. Metapopulation invasion capacity lambda(I) sets the condition for successful invasion of an empty network from one small local population as lambda(I)>delta. The metapopulation capacities lambda(M) and lambda(I) are defined as the leading eigenvalue or a comparable quantity of an appropriate "landscape" matrix. Based on these definitions, we present a classification of a very general class of deterministic, continuous-time and discrete-time metapopulation models. Two specific models are analyzed in greater detail: a spatially realistic version of the continuous-time Levins model and the discrete-time incidence function model with propagule size-dependent colonization rate and a rescue effect. In both models we assume that the extinction rate increases with decreasing patch area and that the colonization rate increases with patch connectivity. In the spatially realistic Levins model, the two types of metapopulation capacities coincide, whereas the incidence function model possesses a strong Allee effect characterized by lambda(I)=0. For these two models, we show that the metapopulation capacities can be considered as simple sums of contributions from individual habitat patches, given by the elements of the leading eigenvector or comparable quantities. We may therefore assess the significance of particular habitat patches, including new patches that might be added to the network, for the metapopulation capacities of the network as a whole. We derive useful approximations for both the threshold conditions and the equilibrium states in the two models. The metapopulation capacities and the measures of the dynamic significance of particular patches can be calculated for real patch networks for applications in metapopulation ecology, landscape ecology, and conservation biology.  相似文献   

2.
Metapopulation theory for fragmented landscapes   总被引:18,自引:0,他引:18  
We review recent developments in spatially realistic metapopulation theory, which leads to quantitative models of the dynamics of species inhabiting highly fragmented landscapes. Our emphasis is in stochastic patch occupancy models, which describe the presence or absence of the focal species in habitat patches. We discuss a number of ecologically important quantities that can be derived from the full stochastic models and their deterministic approximations, with a particular aim of characterizing the respective roles of the structure of the landscape and the properties of the species. These quantities include the threshold condition for persistence, the contributions that individual habitat patches make to metapopulation dynamics and persistence, the time to metapopulation extinction, and the effective size of a metapopulation living in a heterogeneous patch network.  相似文献   

3.
Long-term dynamics in a metapopulation of the American pika   总被引:11,自引:0,他引:11  
A 20-yr study of a metapopulation of the American pika revealed a regional decline in occupancy in one part of a large network of habitat patches. We analyze the possible causes of this decline using a spatially realistic metapopulation model, the incidence function model. The pika metapopulation is the best-known mammalian example of a classical metapopulation with significant population turnover, and it satisfies closely the assumptions of the incidence function model, which was parameterized with data on patch occupancy. The model-predicted incidences of patch occupancy are consistent with observed incidences, and the model predicts well the observed turnover rate between four metapopulation censuses. According to model predictions, the part of the metapopulation where the decline has been observed is relatively unstable and prone to large oscillations in patch occupancy, whereas the other part of the metapopulation is predicted to be persistent. These results demonstrate how extinction-colonization dynamics may produce spatially correlated patterns of patch occupancy without any spatially correlated processes in local dynamics or extinction rate. The unstable part of the metapopulation gives an empirical example of multiple quasi equilibria in metapopulation dynamics. Phenomena similar to those observed here may cause fluctuations in species' range limits.  相似文献   

4.
Although the Levins model has made important theoretical contributions to ecology, its empirical support has not been conclusively established yet. We used published colonization and extinction data from 55 metapopulations to calculate their Levins equilibrium patch occupancy. Over all species, there were not significant differences between the observed patch occupancies and the Levins model's estimates. However, invertebrates and vertebrate species with some degree of threat had patch occupancies larger than the model's expectancies. A temporal sampling effect was found for invertebrate species, with departure from the Levins model decreasing as the length of the study period increased. There was a negative relationship between patch occupancy and extinction probability, as expected under the “rescue effect”. The high rates at which invertebrates produce propagules could lead the Levins model to underestimate patch occupancy, whereas the observed patch occupancy of threatened species may be a transient phenomenon that results from extinction probabilities that increase over time. Therefore, the Levins model captures the metapopulation dynamics of a wide range of species in a simple formula whereas its equilibrium point can be used as evidence of metapopulation stability. Although mechanistic models provide more precise and accurate metapopulation predictions, they also can sacrifice the generality and simplicity of the Levins model.  相似文献   

5.
A recent study [Harding and McNamara, 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160, 173-185] presented a unifying framework for the classic Levins metapopulation model by incorporating several realistic biological processes, such as the Allee effect, the Rescue effect and the Anti-rescue effect, via appropriate modifications of the two basic functions of colonization and extinction rates. Here we embed these model extensions on a spatially explicit framework. We consider population dynamics on a regular grid, each site of which represents a patch that is either occupied or empty, and with spatial coupling by neighborhood dispersal. While broad qualitative similarities exist between the spatially explicit models and their spatially implicit (mean-field) counterparts, there are also important differences that result from the details of local processes. Because of localized dispersal, spatial correlation develops among the dynamics of neighboring populations that decays with distance between patches. The extent of this correlation at equilibrium differs among the metapopulation types, depending on which processes prevail in the colonization and extinction dynamics. These differences among dynamical processes become manifest in the spatial pattern and distribution of “clusters” of occupied patches. Moreover, metapopulation dynamics along a smooth gradient of habitat availability show significant differences in the spatial pattern at the range limit. The relevance of these results to the dynamics of disease spread in metapopulations is discussed.  相似文献   

6.
We describe a mathematically exact method for the analysis of spatially structured Markov processes. The method is based on a systematic perturbation expansion around the deterministic, non-spatial mean-field theory, using the theory of distributions to account for space and the underlying stochastic differential equations to account for stochasticity. As an example, we consider a spatial version of the Levins metapopulation model, in which the habitat patches are distributed in the d-dimensional landscape Rd in a random (but possibly correlated) manner. Assuming that the dispersal kernel is characterized by a length scale L, we examine how the behavior of the metapopulation deviates from the mean-field model for a finite but large L. For example, we show that the equilibrium fraction of occupied patches is given by p(0)+c/L(d)+O(L(-3d/2)), where p(0) is the equilibrium state of the Levins model and the constant c depends on p(0), the dispersal kernel, and the structure of the landscape. We show that patch occupancy can be increased or decreased by spatial structure, but is always decreased by stochasticity. Comparison with simulations show that the analytical results are not only asymptotically exact (as L-->infinity), but a good approximation also when L is relatively small.  相似文献   

7.
R. A. Briers  P. H. Warren 《Oecologia》2000,123(2):216-222
Simple metapopulation models assume that local populations occur in patches of uniform quality habitat separated by non-habitat. However field metapopulations tend to show considerable spatial and temporal variation in patch quality, and hence probability of occupancy. This may have implications for the adequacy of simple metapopulation models in describing and predicting regional population dynamics of natural systems. This study investigated the effects of habitat characteristics on landscape-scale occupancy dynamics of two species of backswimmer (Notonecta, Hemiptera: Notonectidae) in small freshwater ponds. The results demonstrated clear links between habitat, pond occupancy and population turnover, particularly local extinction. There were considerable changes in the habitat of individual ponds between years, but local changes were not spatially correlated and the frequency distribution of habitat conditions at the landscape level remained similar in different years. Stable occupancy levels of Notonecta species appears to result from a balance of the rates of creation and loss of suitable habitat due to spatially uncorrelated habitat change. Systems such as this, where turnover is driven by habitat dynamics, demonstrate the potential value of incorporating the dynamics of habitat change into metapopulation models. Such developments are likely to improve predictions of landscape-scale occupancy dynamics, whilst also allowing patch-level predictions of occupancy, based on local habitat conditions. Received: 18 August 1999 / Accepted: 3 December 1999  相似文献   

8.
Current research recognizes that both the spatial and temporal structure of the landscape influence species persistence. Patch models that incorporate the spatial structure of the landscape have been used to investigate static habitat destruction by comparing persistence results within nested landscapes. Other researchers have incorporated temporal structure into their models by making habitat suitability a dynamic feature of the landscape. In this article, we present a spatially realistic patch model that allows patches to be in one of three states: uninhabitable, habitable, or occupied. The model is analytically tractable and allows us to explore the interactions between the spatial and temporal structure of the landscape as perceived by the target species. Extinction thresholds are derived that depend on habitat suitability, mean lifetime of a patch, and metapopulation capacity. We find that a species is able to tolerate more ephemeral destruction, provided that the rate of the destruction does not exceed the scale of its own metapopulation dynamics, which is dictated by natural history characteristics and the spatial structure of the landscape. This model allows for an expansion of the classic definition of a patch and should prove useful when considering species inhabiting complex dynamic landscapes, for example, agricultural landscapes.  相似文献   

9.
Habitat turnover concomitantly causes destruction and creation of habitat patches. Following such a perturbation, metapopulations harbor either an extinction debt or an immigration credit, that is the future decrease or increase in population numbers due to this disturbance. Extinction debt and immigration credit are rarely considered simultaneously and disentangled from the relaxation time (time to new equilibrium). In this contribution, we test the relative importance of two potential drivers of time-delayed metapopulation dynamics: the spatial configuration of the habitat turnover and species dispersal ability. We provide a simulation-based investigation projecting metapopulation dynamics following habitat turnover in virtual landscapes. We consider two virtual species (a short-distance and a long-distance disperser) and five scenarios of habitat turnover depending on net habitat loss or gain and habitat aggregation. Our analyses reveal that (a) the main determinant of the magnitude of the extinction debt or immigration credit is the net change in total habitat area, followed by species dispersal distance and finally by the post-turnover habitat aggregation; (b) relaxation time weakly depends on the magnitude of the immigration credit or of the extinction debt; (c) the main determinant of relaxation time is dispersal distance followed by the net change in total habitat area and finally by the post-turnover habitat aggregation. These results shed light on the relative importance of dispersal ability and habitat turnover spatial structure on the components of time-delayed metapopulation dynamics.  相似文献   

10.
Traditional metapopulation theory classifies a metapopulation as a spatially homogeneous population that persists on neighboring habitat patches. The fate of each population on a habitat patch is a function of a balance between births and deaths via establishment of new populations through migration to neighboring patches. In this study, we expand upon traditional metapopulation models by incorporating spatial heterogeneity into a previously studied two-patch nonlinear ordinary differential equation metapopulation model, in which the growth of a general prey species is logistic and growth of a general predator species displays a Holling type II functional response. The model described in this work assumes that migration by generalist predator and prey populations between habitat patches occurs via a migratory corridor. Thus, persistence of species is a function of local population dynamics and migration between spatially heterogeneous habitat patches. Numerical results generated by our model demonstrate that population densities exhibit periodic plane-wave phenomena, which appear to be functions of differences in migration rates between generalist predator and prey populations. We compare results generated from our model to results generated by similar, but less ecologically realistic work, and to observed population dynamics in natural metapopulations.  相似文献   

11.
《Acta Oecologica》2002,23(5):287-296
Population viability analysis (PVA) and metapopulation theory are valuable tools to model the dynamics of spatially structured populations. In this article we used a spatially realistic population dynamic model to simulate the trajectory of a Proclossiana eunomia metapopulation in a network of habitat patches located in the Belgian Ardenne. Sensitivity analysis was used to evaluate the relative influence of the different parameters on the model output. We simulated habitat loss by removing a percentage of the original habitat, proportionally in each habitat patch. Additionally, we evaluated isolation and fragmentation effects by removing and dividing habitat patches from the network, respectively. The model predicted a slow decline of the metapopulation size and occupancy. Extinction risks predicted by the model were highly sensitive to environmental stochasticity and carrying capacity. For a determined level of habitat destruction, the expected lifetime of the metapopulation was highly dependent on the spatial configuration of the landscape. Moreover, when the proportion of removed habitat is above 40% of the original habitat, the loss of whole patches invariably leads to the strongest reduction in metapopulation viability.  相似文献   

12.
Species associated with transient habitats need efficient dispersal strategies to ensure their regional survival. Using a spatially explicit metapopulation model, we studied the effect of the dispersal range on the persistence of a metapopulation as a function of the local population and landscape dynamics (including habitat patch destruction and subsequent regeneration). Our results show that the impact of the dispersal range depends on both the local population and patch growth. This is due to interactions between dispersal and the dynamics of patches and populations via the number of potential dispersers. In general, long-range dispersal had a positive effect on persistence in a dynamic landscape compared to short-range dispersal. Long-range dispersal increases the number of couplings between the patches and thus the colonisation of regenerated patches. However, long-range dispersal lost its advantage for long-term persistence when the number of potential dispersers was low due to small population growth rates and/or small patch growth rates. Its advantage also disappeared with complex local population dynamics and in a landscape with clumped patch distribution.  相似文献   

13.
We derive measures for assessing the value of an individual habitat fragment for the dynamics and persistence of a metapopulation living in a network of many fragments. We demonstrate that the most appropriate measure of fragment value depends on the question asked. Specifically, we analyse four alternative measures: the contribution of a fragment to the metapopulation capacity of the network, to the equilibrium metapopulation size, to the expected time to metapopulation extinction and the long-term contribution of a fragment to colonization events in the network. The latter measure is comparable to density-dependent measures in general matrix population theory, though some differences are introduced by the fact that "density dependence" is spatially localized in the metapopulation context. We show that the value of a fragment depends not only on the properties of the landscape but also on the properties of the species. Most importantly, variation in fragment values between the habitat fragments is greatest in the case of rare species that occur close to the extinction threshold, as these species are likely to be restricted to the most favorable parts of the landscape. We expect that the measures of habitat fragment value described and analysed here have applications in landscape ecology and in conservation biology.  相似文献   

14.
Simple analytical models assuming homogeneous space have been used to examine the effects of habitat loss and fragmentation on metapopulation size. The models predict an extinction threshold, a critical amount of suitable habitat below which the metapopulation goes deterministically extinct. The consequences of non-random loss of habitat for species with localized dispersal have been studied mainly numerically. In this paper, we present two analytical approaches to the study of habitat loss and its metapopulation dynamic consequences incorporating spatial correlation in both metapopulation dynamics as well as in the pattern of habitat destruction. One approach is based on a measure called metapopulation capacity, given by the dominant eigenvalue of a "landscape" matrix, which encapsulates the effects of landscape structure on population extinctions and colonizations. The other approach is based on pair approximation. These models allow us to examine analytically the effects of spatial structure in habitat loss on the equilibrium metapopulation size and the threshold condition for persistence. In contrast to the pair approximation based approaches, the metapopulation capacity based approach allows us to consider species with long as well as short dispersal range and landscapes with spatial correlation at different scales. The two methods make dissimilar assumptions, but the broad conclusions concerning the consequences of spatial correlation in the landscape structure are the same. Our results show that increasing correlation in the spatial arrangement of the remaining habitat increases patch occupancy, that this increase is more evident for species with short-range than long-range dispersal, and that to be most beneficial for metapopulation size, the range of spatial correlation in landscape structure should be at least a few times greater than the dispersal range of the species.  相似文献   

15.
Single-species metapopulation dynamics: concepts, models and observations   总被引:24,自引:0,他引:24  
This paper outlines a conceptual and theoretical framework for single-species metapopulation dynamics based on the Levins model and its variants. The significance of the following factors to metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch size and isolation; compensatory effects between colonization and extinction rates; the effect of immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches occupied in an assemblage of species (the core-satellite distribution). A new model of incidence functions is described, which allows one to estimate species' colonization and extinction rates on islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation dynamics are discussed with examples. The concluding section describes four possible scenarios of metapopulation extinction.  相似文献   

16.
We present a formula for the mean lifetime of metapopulations in heterogeneous landscapes. This formula provides new insights into the effect of the spatial structure of habitat networks on metapopulation survival, with consequences for modeling, landscape evaluation, and metapopulation management. In the whole study, the spatially realistic metapopulation model of Frank and Wissel is taken as a basis. First, as a key result on the way toward the desired formula, it is shown that a simple nonspatial (Levins-type) model is able to reproduce the behavior of the complex spatial model considered regarding the mean lifetime, provided its parameters appropriately summarize all the relevant details of spatial heterogeneity. Second, the formula presented reveals how data from species and landscape have to be combined to estimate the survival chance of a metapopulation without having to run any simulation or to solve numerically any model equation. Third, by taking the formula as a basis, landscape measures are derived that allow dissimilar habitat networks to be evaluated, compared, and ranked in terms of their effect on metapopulation survival. Fourth, a combination of analytical, nonlinear regression as well as aggregation techniques was used to deduce the formula presented. The potential of these techniques for simplifying (meta)population models that are complex due to spatial heterogeneity is discussed.  相似文献   

17.
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the stability of equilibrium states in the local patches in the absence of migration determines the stability of spatially homogeneous equilibrium states of the whole metapopulation when migration is added. Here, we present classes of examples in which deviations from the usual assumptions lead to different predictions. In particular, heterogeneity in local habitat quality in combination with long-range dispersal can induce a stable equilibrium for the metapopulation dynamics, even when within-patch processes would produce very complex behaviour in each patch in the absence of migration. Thus, when spatially homogeneous equilibria become unstable, the system can often shift to a different, spatially inhomogeneous steady state. This new global equilibrium is characterized by a standing spatial wave of population abundances. Such standing spatial waves can also be observed in metapopulations consisting of identical habitat patches, i.e. without heterogeneity in patch quality, provided that dispersal is density dependent. Spatial pattern formation after destabilization of spatially homogeneous equilibrium states is well known in reaction–diffusion systems and has been observed in various ecological models. However, these models typically require the presence of at least two species, e.g. a predator and a prey. Our results imply that stabilization through spatial pattern formation can also occur in single-species models. However, the opposite effect of destabilization can also occur: if dispersal is short range, and if there is heterogeneity in patch quality, then the metapopulation dynamics can be chaotic despite the patches having stable equilibrium dynamics when isolated. We conclude that more general metapopulation models than those commonly studied are necessary to fully understand how spatial structure can affect spatial and temporal variation in population abundance.  相似文献   

18.
Comparison of dispersal rates of the bog fritillary butterfly between continuous and fragmented landscapes indicates that between patch dispersal is significantly lower in the fragmented landscape, while population densities are of the same order of magnitude. Analyses of the dynamics of the suitable habitat for the butterfly in the fragmented landscape reveal a severe, non linear increase in spatial isolation of patches over a time period of 30 years (i.e. 30 butterfly generations), but simulations of the butterfly metapopulation dynamics using a structured population model show that the lower dispersal rates in the fragmented landscape are far above the critical threshold leading to metapopulation extinction. These results indicate that changes in individual behaviour leading to the decrease of dispersal rates in the fragmented landscape were rapidly selected for when patch spatial isolation increased. The evidence of such an adaptive answer to habitat fragmentation suggests that dispersal mortality is a key factor for metapopulation persistence in fragmented landscapes. We emphasise that landscape spatial configuration and patch isolation have to be taken into account in the debate about large-scale conservation strategies.  相似文献   

19.
Metapopulation models are widely used to study species that occupy patchily distributed habitat, but are rarely applied to migratory species, because of the difficulty of identifying demographically independent subpopulations. Here, we extend metapopulation theory to describe the directed seasonal movement of migratory populations between two sets of habitat patches, breeding and non-breeding, with potentially different colonization and extinction rates between patch types. By extending the classic metapopulation model, we show that migratory metapopulations will persist if the product of the two colonization rates exceeds the product of extinction rates. Further, we develop a spatially realistic migratory metapopulation model and derive a landscape metric-the migratory metapopulation capacity-that determines persistence. This new extension to metapopulation theory introduces an important tool for the management and conservation of migratory species and may also be applicable to model the dynamics of two host-parasite systems.  相似文献   

20.
Mark P. Johnson 《Oikos》2000,88(1):67-74
The classical view of metapopulations relates the regional abundance of a species to the balance between the extinction and colonization dynamics of identical local populations. Species in successional landscapes may represent the most appropriate examples of classical metapopulations. However, Levins‐type metapopulation models do not explicitly separate population loss due to successional habitat change from other causes of extinction. A further complication is that the chance of population loss due to successional habitat change may be related to the age of a patch. I developed simple patch occupancy models to include succession and included consideration of patch age structure to address two related questions: what are the implications of changes in patch demographic rates and when is a move to a structured patch occupancy model justified? Age‐related variation in patch demography could increase or decrease the equilibrium fraction of the available habitat occupied by a species when compared to the predictions of an unstructured model. Metapopulation persistence was enhanced when the age class of patches with the highest species occupancy suffered relatively low losses to habitat succession. Conversely, when the age class of patches with the highest species occupancy also had relatively high successional loss rates, extinction thresholds were higher that would be predicted by a simple unstructured model. Hence age‐related variation in patch successional rate introduces biases into the predictions of simple unstructured models. Such biases can be detected from field surveys of the fraction of occupied and unoccupied patches in each age class. Where a bias is demonstrated, unstructured models will not be adequate for making predictions about the effects of changing parameters on metapopulation size. Thinking in successional terms emphasizes how landscapes might be managed to enhance or reduce the patch occupancy by any particular metapopulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号