首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Both smooth muscle cells and endothelial cells play an important role in vascular wound healing. To elucidate the role of fructose-1, 6-diphosphate, cell proliferation and cell migration studies were performed with human endothelial cells and rat smooth muscle cells. To mimic blood vessels, endothelial and smooth muscle cells were used in 1:10, 1:5, and 1:1 concentrations, respectively, mimicking large-, mid-, and capillary-sized blood vessels. Cell migration was studied with fetal bovine serum-starved cells. For cell proliferation assay, cells were plated at 30–50% confluency and then starved. The cells were incubated for 48 h with fructose-1, 6-diphosphate at (per ml) 10 mg, 1 mg, 500 μg, 250 μg, 100 μg, and 10 μg, pulsed with tritiated-thymidine and incubated with 1 N NaOH for 30 min at room temperature, harvested, and counted. For migration assay, confluent cells were starved, wounded, and incubated for 24 h with same concentrations of fructose-1, 6-diphosphate as in proliferation assay. The cells were fixed and counted. Smooth muscle cell proliferation was inhibited by fructose-1, 6-diphosphate at 10 mg/ml. In the xenograft models of 1:10, 1:5, and 1:1 fructose-1, 6-diphosphate inhibited proliferation at 10 mg/ml. In migration studies 10 mg fructose-1, 6-diphosphate per ml was inhibitory to both cell types. In large-, mid-, and capillary-sized blood vessels, fructose-1, 6-diphosphate inhibited proliferation of both cell types at 10 mg/ml. At the individual cell level, fructose-1, 6-diphosphate is nonstimulatory to proliferation of endothelial cells while inhibiting migration, and it acts on smooth muscle cells by inhibiting both proliferation and migration.  相似文献   

2.
Fructose-1,6-diphosphate (FDP) is a glycolytic intermediate which has been used an intervention in various ischemic conditions for two decades. Yet whether FDP can enter the cell is under constant debate. In this study we examined membrane permeability of FDP in artificial membrane bilayers and in endothelial cells. To examine passive diffusion of FDP through the membrane bilayer, L-a-phosphatidylcholine from egg yolk (Egg PC) (10 mM) multi-lamellar vesicles were created containing different external concentrations of FDP (0, 0.5, 5 and 50 mM). The passive diffusion of FDP into the vesicles was followed spectrophotometrically. The results indicate that FDP diffuses through the membrane bilayer in a dose-dependent fashion. The movement of FDP through Egg PC membrane bilayers was confirmed by measuring the conversion of FDP to dihydroxyacetone-phosphate and the formation of hydrozone. FDP (0, 0.5, 5 or 50 mM) was encapsulated in Egg PC multilamellar vesicles and placed in a solution containing aldolase. In the 5 and 50 mM FDP groups there was a significant increase in dihydroxyacetone/hydrazone indicating that FDP crossed the membrane bilayer intact. We theorized that the passive diffusion of FDP might be due to disruption of the membrane bilayer. To examine this hypothesis, small unilamellar vesicles composed of Egg PC were created in the presence of 60 mM carboxyfluorescein, and the leakage of the sequestered dye was followed upon addition of various concentrations of FDP, fructose, fructose-6-phosphate, or fructose-1-phosphate (0, 5 or 50 mM). These results indicate that increasing concentrations of FDP increase the leakage rate of carboxyfluorescein. In contrast, no concentration of fructose, fructose-6-phosphate, or fructose-1-phosphate resulted in any significant increase in membrane permeability to carboxyfluorescein. To examine whether FDP could pass through cellular membranes, we examined the uptake of 14C-FDP by endothelial cells cultured under hypoxia or normoxia for 4 or 16 h. The uptake of FDP was dose-dependent in both the normoxia and hypoxia treated cells, and was accompanied by no significant loss in endothelial cell viability. Our results demonstrate that FDP can diffuse through membrane bilayers in a dose-dependent manner.  相似文献   

3.
Effect of fructose 1,6-diphosphate (FDP) and carbon tetrachloride (CCl4) were studied individually and in combination on rat endothelial (ET) and smooth muscle cell (SMC) nitric oxide synthase (NOS) activities in vivo, inhibition of ET and SMC NOS activity in CCl4 treated rats was reversed in FDP + CCl4 treated animals. Cellular based NOS activity was significantly increased in FDP treated group of rats when compared to non treated controls. The results suggest a significant increase in NOS in rats treated with a combination of FDP + CCl4 thus overcoming the suppression of NOS exposed to CCl4 alone.  相似文献   

4.
NO在胆道加压引起的反射活动中的作用   总被引:1,自引:0,他引:1  
向胆道加压至 4kPa ,可同时引起血压降低和Oddi括约肌 (SO)肌电活动减弱或消失 ,这总称为胆道加压反射 ,其中前者称为胆道 血压反射 ,后者称为胆道 SO反射。本实验应用 3 2只家兔观察一氧化氮 (NO)对胆道加压反射活动的影响。在静脉滴注去甲肾上腺素 4 μg/(kg·min)引起血压升高和SO肌电振幅增大的基础上 ,再行胆道加压至 4kPa ,仍同时引起血压降低和Oddi括约肌 (SO)肌电活动减弱 ;而在静脉注射NO合酶抑制剂NG 硝基 L 精氨酸 (L NNA) 10mg/kg引起血压升高和SO肌电振幅增大的基础上 ,再行胆道加压至 4kPa,全部动物胆道 血压反射受到完全抑制 ,即未出现血压降低反应 ;少数 ( 3 /8)动物胆道 SO反射受到完全抑制 ,多数 ( 5 /8)动物该反射受到明显抑制 (P <0 0 1)。向SO局部灌注L NNA ,只引起SO肌电振幅增大而不影响血压 ,在此基础上行胆道加压 ,对胆道 SO反射的影响与全身用药相似 ,对胆道 血压反射却无影响。这提示 ,这两种反射活动是相对独立的 ,是经不同传出途径和效应器实现的 ;且这两种反射都主要是通过NO介导的  相似文献   

5.
Previous studies have shown apolipoprotein E (apoE) recruitment to medial layers of carotid arteries after vascular injury in vivo and apoE activation of inducible nitric oxide synthase (iNOS) in smooth muscle cells in vitro. This investigation explored the relationship between medial apoE recruitment and iNOS activation in protection against neointimal hyperplasia. ApoE was present in both neointimal-resistant C57BL/6 mice and neointimal-susceptible FVB/N mice 24 h after carotid denudation, but iNOS expression was observed only in the neointimal-resistant C57BL/6 mice. However, iNOS was not observed in apoE-defective C57BL/6 mice. In contrast, overexpression of apoE in FVB/N mice activated iNOS expression in the injured vessels, resulting in protection against neointimal hyperplasia. ApoE and iNOS were colocalized in the medial layer of neointimal-resistant mouse strains. Endothelial denudation of carotid arteries in the iNOS-deficient NOS2(-/-) mice did not increase neointimal hyperplasia but significantly increased medial thickness and area. The iNOS-specific inhibitor also abrogated the apoE protective effects on vascular response to injury in apoE-overexpressing FVB/N mice. Thus, injury-induced activation of iNOS requires apoE recruitment. Moreover, both apoE and iNOS are necessary for the suppression of cell proliferation, and apoE recruitment without iNOS expression resulted in medial hyperplasia without cell migration to the intima.  相似文献   

6.
The clinically relevant drug oltipraz (OPZ) has previously been shown to inhibit cytochrome P450 enzymes [Chem. Res. Toxicol. 13 (2000) 245]. The current study reveals that OPZ is also able to inhibit *NO formation by purified inducible nitric oxide synthase (iNOS) but not by neuronal nitric oxide synthase in hemoglobin assays. The inhibition of iNOS by OPZ is reversible and competitive with an IC(50) of 5.9 microM and Ki of 0.6 microM. In murine BV-2 microglial cells, an immortalized cell line that produces *NO in response to lipopolysaccharide (LPS), OPZ is able to block the formation of nitrite in LPS treated cells. The inhibitory effect of OPZ on LPS treated cells is not due to cell toxicity. Finally, treatment of cells with OPZ does not induce or suppress expression of iNOS protein as shown by Western blot analysis.  相似文献   

7.
The aims were to evaluate the role of cardiovascular nitric oxide (NO)-system in C-type natriuretic peptide (CNP) actions and to investigate receptor types and signaling pathways involved in this interaction. Wistar rats were infused with saline or CNP. Mean arterial pressure (MAP) and nitrites and nitrates (NOx) excretion were determined. NO synthase (NOS) activity and NOS expression (Western blot) were analyzed in atria, ventricle and aorta. CNP decreased MAP and increased NOx excretion. CNP estimulated NOS activity, inducing no changes on cardiac and vascular endothelial NOS expression. NOS activity induced by CNP was abolished by suramin and calmidazoliumand but it is not modified by anantin. CNP would interact with NPR-C receptor coupled via G proteins leading to the activation Ca(2+)-calmodulin dependent endothelial NOS, increasing NO production which would induce the reduction in cardiac myocyte contractility and ANP synthesis and secretion in right atria and the relaxation of vascular smooth muscle.  相似文献   

8.

Background

Gene therapy strategies for the treatment of vascular disease such as the prevention of post‐angioplasty restenosis require efficient, non‐toxic transfection of vascular cells. In vitro studies in these cells contribute to vector development for in vivo use and for the evaluation of genes with therapeutic potential. The aim of this project was to evaluate a novel synthetic vector consisting of a liposome (L), an integrin targeting peptide (I), and plasmid DNA (D), which combine to form the LID vector complex.

Methods

Cultures of porcine smooth muscle cells and endothelial cells were established and then transfected with the LID vector, using the reporter genes luciferase and green fluorescent protein and the metalloprotease inhibitor TIMP‐1.

Results

The LID vector system transfected primary porcine vascular smooth muscle cells and porcine aortic endothelial cells with efficiency levels of 40% and 35%, respectively. By increasing the relative DNA concentration four‐fold, incubation periods as short as 30 min achieved the same levels of luciferase transgene expression as 4 h incubations at lower DNA concentrations. The transfection did not affect cell viability as measured by their proliferative potential. Serum levels of up to 20% in the transfection medium had no adverse affect on the efficiency of transfer and gene expression in either cell type. Transfections with the cDNA for TIMP‐1 produced protein levels that peaked at 130 ng/ml per 24 h and persisted for 14 days at 10 ng/ml per 24 h.

Conclusion

This novel vector system has potential for studies involving gene transfer to cardiovascular cells in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

9.
10.
目的:研究逆转录病毒介导诱导型一氧化氮合酶(iNOS)基因转染对体外培养的大鼠主动脉血管平滑肌细胞(VSMC)增殖的影响,探讨iNOS转基因治疗血管移植术后再狭窄的可行性。方法:将不同滴度的病毒上清转染体外培养的VSMC;采用RT-PCR、Western-blot检测VSMC内iNOSmRNA和iNOS蛋白的表达;用Griess法检测iNOS转基因细胞的培养液中一氧化氮(NO)的含量;用改良MTT、法检测iNOS转基因对VSMC增殖的抑制作用。结果:不同滴度的PLXSNiNOS转染体外培养的VSMC48h后,在VSMC内可检测到外源性iNOSmRNA和iNOS蛋白,表达水平随病毒滴度的增加而增强,呈现剂量依赖性;而用最高滴度的PIXSN转染体外培养的VSMC48h后,在VSMC内未能检测到外源性iNOSmRNA和iNOS蛋白表达;iNOS转基因细胞的培养液中NO含量显著增高,同时VSMC增殖受到明显抑制,均呈现剂量依赖性。结论:逆转录病毒介导iNOS基因可高效转染体外培养的VSMC,并在细胞内表达活性的iNOS蛋白,而且产生大量的NO,明显抑制VSMC增殖。为iNOS转基因治疗血管移植术后再狭窄的临床应用提供有力的实验依据。  相似文献   

11.
Metabolic syndrome is a cluster of metabolic abnormalities, including hypertension, hyperlipidemia, hyperinsulinemia, glucose intolerance and obesity. In such lifestyle-related diseases, impairment of nitric oxide (NO) production or bioactivity has been reported to lead to the development of atherogenic vascular diseases. Therefore, in the present study we investigated changes in the NO/cyclic guanosine monophosphate (cGMP) system in aortas of SHR/NDmcr-cp (cp/cp) rats (SHR-cp), a model of the metabolic syndrome. In aortas of SHR-cp, endothelium-dependent relaxations induced by acetylcholine and endothelium-independent relaxations induced by sodium nitroprusside were significantly impaired in comparison with Wistar-Kyoto rats. Furthermore, protein levels of soluble guanylyl cyclase and cGMP levels induced by sodium nitroprusside were significantly decreased. In contrast, protein levels of endothelium NO synthase and cGMP levels induced by acetylcholine were significantly increased, and plasma NO2 plus NO3 levels were also increased. The levels of lipid peroxide in plasma and the contents of 3-nitrotyrosine, a biomarker of peroxynitrite, in aortas were markedly increased. These findings indicate that in the aortas of SHR-cp, NO production from the endothelium is augmented, although the NO-induced relaxation response is impaired. Enhanced NO production may be a compensatory response to a variety of factors, including increases in oxidative stress.  相似文献   

12.
Fructose-1, 6-diphosphate (FDP) decreases the effect of ethanol on Ca++ entry and inhibits the ethanol-stimulated phosphate efflux in rat heart slices. FDP also inhibits the ethanol-stimulated [36Cl-]-uptake by rat brain microvesicles and affects the isolated GABA-receptor in a way opposite to that of ethanol. The in vivo effects of FDP include a dose-dependent decrease in ethanol-induced gastric ulcers and a decrease in the serum transaminase levels raised by chronic ethanol administration. Other central actions of ethanol such as diuresis, narcosis, dependence and withdrawal symptoms are also counteracted by FDP.  相似文献   

13.
14.
目的:观察吲哚昔酚(ldoxifene,ldo)对大鼠血管平滑肌细胞增殖的影响,并探讨平滑肌源性一氧化氮(NO)在其中的作用。方法:血管平滑肌细胞培养、NO释放的测定、细胞计数和MTT测定。结果:吲哚昔酚可剂量依赖性的促使血管平滑肌细胞NO的释放,10μmol/L吲哚昔酚明显抑制10%胎牛血清(FCS)和10^-7mol/L的ET-1诱导的细胞增殖,吲哚昔酚的抑制作用可被一氧化氮合酶抑制剂L-NAME(100μmol/L)和鸟苷酸环化酶(guanylate cyclase,GC)抑制剂美蓝(methylene blue,MB)(10μmol/L)明显减轻。结论:吲哚昔酚抑制血管平滑肌细胞增殖的作用与其NO释放密切相关,其中可能有NO-GC-cGMP通路的参与。  相似文献   

15.
16.
Summary Heterotypic cell-cell interactions appear to be involved in the control of development and function in a wide variety of tissues. In the vasculature, endothelial cells and mural cells (smooth muscle cells or pericytes) make frequent contacts, suggesting a role for intercellular interactions in the regulation of vascular growth and function. We have previously grown endothelial cells and mural cells together in mixed cultures and found that heterocellular contact led to endothelial growth inhibition. However, this mixed culture system does not lend itself to the examination of the effects of contact on the phenotype of the individual cell types. We have therefore developed a co-culture system in which cells can be co-cultured across a porous membrane, permitting intercellular contact while maintaining pure cell populations. Co-culture of endothelial cells and smooth muscle cells across membranes with pore sizes of 0.02, 0.4, 0.6, and 0.8μm maintained the two cell types as homogeneous populations, whereas smooth muscle cells migrated across the membrane through pores of 2.0μm. Vascular cell co-culture across membranes with 0.8-μm pores resulted the inhibition of endothelial cell proliferation and the generation of conditioned media which inhibited endothelial cell growth. The arrangement of the cells in this co-culture system mimics thein vivo orientation of vascular cells in which mural cells are separated from the abluminal surface of the endothelium by a fenestrated internal elastic lamina or basement membrane. Because this co-culture system maintains separable populations of cells in contact or close proximity allowing for biochemical and molecular analyses of pure populations, it should prove useful for the study of cell-cell interactions in a variety of systems.  相似文献   

17.
Nitric oxide (NO), produced by NO-synthase (NOS), serves as an important vasodilator and inhibitory neurotransmitter. Inducible NOS (iNOS) is expressed in response to cytokine stimulation and is therefore not ordinarily present in healthy tissue. However, iNOS has been identified in certain organs, including the penis. The development of mice deficient in the iNOS gene (iNOS -/-) has provided a useful tool for the study of iNOS function. Therefore, an in vitro examination of vascular and nerve-mediated responses of corpus cavernosum (CC) and vascular responses of aorta from iNOS -/- mice and their wild-type controls was undertaken. Tissues were mounted in organ baths for agonist- and/or electrical field stimulation (EFS)-induced responses under isometric tension. CC from iNOS -/- mice developed increased sensitivity to phenylephrine (PE) and an increased maximum EFS-induced noradrenergic contraction of approximately 31%. Following PE precontraction, maximum relaxation to acetylcholine was reduced by approximately 39%; conversely, there was a 23% increase in relaxation to the NO-donor sodium nitroprusside. EFS-induced non-adrenergic, non-cholinergic (NANC) nerve-mediated relaxation was unaltered compared to control. Agonist-induced responses of aorta did not significantly differ between iNOS -/- and control mice. These results suggest that iNOS-derived NO may play a role in modulating erectile function and confirm that iNOS does not play a significant role in macrovascular function under normal physiological conditions.  相似文献   

18.
19.
20.
The lactate dehydrogenase of Lactobacillus casei, like that of streptococci, requires fructose-1,6-diphosphate (FDP) for activity. The L. casei enzyme has a much more acidic pH optimum (pH 5.5) than the streptococcal lactate dehydrogenases. This is apparently due to a marked decrease in the affinity of the enzyme for the activator with increasing pH above 5.5; the concentration of FDP required for half-maximal velocity increase nearly 1,000-fold from 0.002 mM at pH 5.5 to 1.65 mM at 6.6. Manganous ions increase the pH range of activity particularly on the alkaline side of the optimum by increasing the affinity for FDP. This pH dependent metal ion activation is not specific for Mn2+. Other divalent metals, Co2+, Cu2+, Cd2+, Ni2+, Fe2+, Fe2+, and Zn2+ but not Mg2+, will effectively substitute for Mn2+, but the pH dependence of the activation differs with the metal ion used. The enzyme is inhibited by a number of commonly used buffering ions, particularly phosphate, citrate, and tris (hydroxymethyl) aminomethane-maleate buffers, even at low buffer concentrations (0.02 M). These buffers inhibit by affecting the binding of FDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号