首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Multistability in vision is an intriguing phenomenon that is currently not well understood. In this paper, we present a new, stochastic model for multistable visual perception. It is based on results of time series analysis of experimental data, yielding evidence for it being a linear, stochastic process. This is the outcome of testing for unstable periodic orbits and comparing the correlation dimension of the data to that of white noise. In the model, all degrees of freedom but one can be determined by general knowledge, thus resulting in a high degree of parsimony. The remaining parameter is used to model the individual characteristics that vary between subjects. Fitting simulations to the experimental data proves the parameter to be in a physiologically highly plausible range. Received: 12 September 2000 / Accepted in revised form: 17 May 2001  相似文献   

2.
The phenomenon of stroboscopic alternative motion exhibits five different percepts that are seen with an increase in the frequency of presentation: (a) succession, (b) fluttering motion, (c) reversible clockwise and counter-clockwise turning motion, (d) oppositional motion and (e) simultaneity. From a synergetic point of view the increase in frequency is a control parameter and the different percepts are order parameters with phase transitions in between. The neural network model of Carmesin and Arndt is applied to receive predictions about hysteresis and phase transitions between these order parameters. Empirical data show the different motion percepts (b), (c) and (e) have lognormal distributions. Following the theoretical model, it is argued that there are three different phases, (a), (c) and (e), with two continuous phase transitions, (b) and (d), between them. The experimental data substantially match the theoretical ssumptions. Received: 29 December 1995 / Accepted in revised form: 3 June 1996  相似文献   

3.
Reversal of perspective for ambiguous optical stimuli (Necker cube, Schröder staircase, honeycomb) has been studied, determining the statistical distribution of time intervals spent on each percept. The experimental distributions can be fitted with the gamma function, characterized by two parameters n, b. The two parameters are not independent, showing a correlatiomn = 0.74.Subsequent intervals appear to be largely independent; from the beta distribution for the fraction of time spent on a given percept, one can show that the subjects differ only in regard to the variance of this variable.  相似文献   

4.
We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans--and present additional original data--which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.  相似文献   

5.
Jolij J  Meurs M 《PloS one》2011,6(4):e18861

Background

Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory) and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception.

Methods and Findings

We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers'' mood.

Conclusions

As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.  相似文献   

6.
How does an animal conceal itself from visual detection by other animals? This review paper seeks to identify general principles that may apply in this broad area. It considers mechanisms of visual encoding, of grouping and object encoding, and of search. In most cases, the evidence base comes from studies of humans or species whose vision approximates to that of humans. The effort is hampered by a relatively sparse literature on visual function in natural environments and with complex foraging tasks. However, some general constraints emerge as being potentially powerful principles in understanding concealment—a ‘constraint’ here means a set of simplifying assumptions. Strategies that disrupt the unambiguous encoding of discontinuities of intensity (edges), and of other key visual attributes, such as motion, are key here. Similar strategies may also defeat grouping and object-encoding mechanisms. Finally, the paper considers how we may understand the processes of search for complex targets in complex scenes. The aim is to provide a number of pointers towards issues, which may be of assistance in understanding camouflage and concealment, particularly with reference to how visual systems can detect the shape of complex, concealed objects.  相似文献   

7.
Somewhere between the retina and our conscious visual experience, the majority of the information impinging on the eye is lost. We are typically aware of only either the most salient parts of a visual scene or the parts that we are actively paying attention to. Recent research on visual neurons in monkeys is beginning to show how the brain both selects and discards incoming visual information. For example, what happens to the responses of visual neurons when attention is directed to one element, such as an oriented colored bar, embedded among an array of other oriented bars? Some of this research shows that attention to the oriented bar restricts the receptive field of visual neurons down to this single element. However, other research shows that attention to this single element affects the responses of neurons with receptive fields throughout the visual field. In this review, these two seemingly contradictory results are shown to actually be mutually consistent. A simple computational model is described that explains these results, and also provides a framework for predicting a variety of additional neurophysiological, neuroimaging and behavioral studies of attention.  相似文献   

8.
Sensitivity to time was investigated to test the linear-timing hypothesis. A long duration was adjusted until accuracy was 75% correct for a short duration in a two-choice procedure. Short durations (2, 4, 6, 8, 10, 12, 14, 16 and 18 s) were selected from previous research that suggests that sensitivity to time is nonlinear in this range. Rats were tested with a single short interval (Experiment 1, n=13) or a random order (Experiment 2, n=7). A local maximum in sensitivity (d' from signal detection theory) was observed at approximately 8-12 s. Sensitivity to time was reliably correlated (r's=0.759-0.941) with previous data. Weber fractions exhibited a U-shape and were negatively correlated with sensitivity to time (r=-0.800). These results provide additional evidence that sensitivity to time is nonlinearly related to physical time.  相似文献   

9.
To examine the phyletic distribution and ontogeny of ‘head-cocking’ (rotating the cranium about the longitudinal body axis while orienting in a fixed direction) in primates, I conducted observations on 229 individuals of 40 different species. Head-cocking in primates typically occurs during visual inspection of objects. The response is primarily characteristic of diminutive species that lack ocular dominance columns in the visual striate cortex (e.g. marmosets, squirrel monkeys), and is most frequently observed during infancy.  相似文献   

10.
Vagaries of visual perception in autism   总被引:16,自引:0,他引:16  
Dakin S  Frith U 《Neuron》2005,48(3):497-507
Three classes of perceptual phenomena have repeatedly been associated with autism spectrum disorder (ASD): superior processing of fine detail (local structure), either inferior processing of overall/global structure or an ability to ignore disruptive global/contextual information, and impaired motion perception. This review evaluates the quality of the evidence bearing on these three phenomena. We argue that while superior local processing has been robustly demonstrated, conclusions about global processing cannot be definitively drawn from the experiments to date, which have generally not precluded observers using more local cues. Perception of moving stimuli is impaired in ASD, but explanations in terms of magnocellular/dorsal deficits do not appear to be sufficient. We suggest that abnormalities in the superior temporal sulcus (STS) may provide a neural basis for the range of motion-processing deficits observed in ASD, including biological motion perception. Such an explanation may also provide a link between perceptual abnormalities and specific deficits in social cognition associated with autism.  相似文献   

11.
Carmel D  Carrasco M 《Neuron》2008,57(6):799-801
Perceptual learning is the improved performance that follows practice in a perceptual task. In this issue of Neuron, Yotsumoto et al. use fMRI to show that stimuli presented at the location used in training initially evoke greater activation in primary visual cortex than stimuli presented elsewhere, but this difference disappears once learning asymptotes.  相似文献   

12.
Gu Y  Liu S  Fetsch CR  Yang Y  Fok S  Sunkara A  DeAngelis GC  Angelaki DE 《Neuron》2011,71(4):750-761
Responses of neurons in early visual cortex change little with training and appear insufficient to account for perceptual learning. Behavioral performance, however, relies on population activity, and the accuracy of a population code is constrained by correlated noise among neurons. We tested whether training changes interneuronal correlations in the dorsal medial superior temporal area, which is involved in multisensory heading perception. Pairs of single units were recorded simultaneously in two groups of subjects: animals trained extensively in a heading discrimination task, and "naive" animals that performed a passive fixation task. Correlated noise was significantly weaker in trained versus naive animals, which might be expected to improve coding efficiency. However, we show that the observed uniform reduction in noise correlations leads to little change in population coding efficiency when all neurons are decoded. Thus, global changes in correlated noise among sensory neurons may be insufficient to account for perceptual learning.  相似文献   

13.
14.
15.
By measuring the contrast threshold for gratings of different waveform and spatial frequency, Campbell & Robson suggested in 1968 that there may be 'channels' tuned to different spatial frequencies. By using the technique of adapting to a high contrast grating, it was possible to measure the band-pass characteristics of these channels. Similar techniques were used to establish the orientational tuning of the channels. Reasons are put forward why it is advantageous to organize the visual system in this manner.  相似文献   

16.
A mathematical model of visual perception is presented with the intention of throwing some light on the problem of perceptual invariance. Two types of differential manifolds (receptive and effector) are associated with the repertoire which is the fundamental concept in the model. The elements of the repertoire carry weights which control the input-output relation in the repertoire and which can be modified by a learning process. It is shown that, under reasonable conditions, these repertoires possess good stability properties and can adjust to the various environments to which they may be subjected. In particular cases, it is shown that the stochastic learning process can be considered as deterministic to a first approximation.  相似文献   

17.
 Although the extrapolation of past perceptual history into the immediate and distant future is a fundamental phenomenon in everyday life, the underlying processing mechanisms are not well understood. A network model consisting of interacting excitatory and inhibitory cell populations coding for stimulus position is used to study the neuronal population response to a continuously moving stimulus. An adaptation mechanism is proposed that offers the possibility to control and modulate motion-induced extrapolation without changing the spatial interaction structure within the network. Using an occluder paradigm, functional advantages of an internally generated model of a moving stimulus are discussed. It is shown that the integration of such a model in processing leads to a faster and more reliable recognition of the input stream and allows for object permanence following occlusion. The modeling results are discussed in relation to recent experimental findings that show motion-induced extrapolation. Received: 19 December 2001 / Accepted: 26 November 2002 / Published online: 3 April 2003 Correspondence to: W. Erlhagen (e-mail: wolfram.erlhagen@mct.uminho.pt) Acknowledgements. The author would like to thank D. Jancke for useful discussions and two anonymous reviewers for helpful comments and suggestions on a previous version of this paper. This research was supported by a European grant (IST-2000-29689) and by the Portuguese Science Foundation (POSI/SRI/38051/2001).  相似文献   

18.
In this paper we propose a model of visual perception in which a positive feedback mechanism can reproduce the pattern stimulus on a neurons screen. The pattern stimulus reproduction is based on informations coming from the spatial derivatives of visual pattern. This information together with the response of the feature extractors provides to the reproduction of the visual pattern as neuron screen electric activity. We simulate several input patterns and prove that the model reproduces the percept.  相似文献   

19.
20.
NMDA receptor-dependent ocular dominance plasticity in adult visual cortex   总被引:12,自引:0,他引:12  
The binocular region of mouse visual cortex is strongly dominated by inputs from the contralateral eye. Here we show in adult mice that depriving the dominant contralateral eye of vision leads to a persistent, NMDA receptor-dependent enhancement of the weak ipsilateral-eye inputs. These data provide in vivo evidence for metaplasticity as a mechanism for binocular competition and demonstrate that an ocular dominance shift can occur solely by the mechanisms of response enhancement. They also show that adult mouse visual cortex has a far greater potential for experience-dependent plasticity than previously appreciated. These insights may force a revision in how data on ocular dominance plasticity in mutant mice have been interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号