共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective and effective targeting of chronic myeloid leukemia stem cells by topoisomerase II inhibitor etoposide in combination with imatinib mesylate in vitro 下载免费PDF全文
Man‐Yu Liu Wei‐Zhang Wang Fen‐Fang Liao Qing‐Qing Wu Xiang‐Hua Lin Yong‐Hen Chen Lin Cheng Xiao‐Bao Jin Jia‐Yong Zhu 《Cell biology international》2017,41(1):16-23
2.
《Expert review of proteomics》2013,10(6):595-598
Evaluation of: Pizzatti L, Panis C, Lemos G et al. Label-free MS(E) proteomic analysis of chronic myeloid leukemia bone marrow plasma: disclosing new insights from therapy resistance. Proteomics 12(17), 2618–2631 (2012).In spite of the effective chronic myeloid leukemia (CML) therapy, a small percentage will fail on therapy and develop acute myeloid leukemia-like blast crisis. Understanding the underlying biology of therapy resistance is probably needed to develop better blood cancer therapy, and CML may be an ideal disease model for future therapy that targets resistance mechanisms. Cell-stromal interactions and dissection of the interstitial tissue fluid is a relatively new source for understanding the resistance mechanisms. Abdelhay’s team have compared the proteome of bone marrow plasma in CML imatinib (Gleevec) responders and nonresponders. We discuss their findings of dysregulated redox and Wnt signaling in imatinib resistance, illustrating how powerful proteomics may be in the discovery of new therapeutic mechanisms. 相似文献
3.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSCassociated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and itsassociated targets, and the potential clinical application in chronic myeloid leukemia. 相似文献
4.
随着靶向治疗时代的到来,慢性粒细胞白血病 (CML)已经从不治之症转变为基本可控的慢性病。患者生存率有了显著提高,当然在疗效、耐受性及耐药性方面仍有提升的空间。长期以来,酪氨酸激酶抑制剂格列卫(Gleevec)一直被认为是合理药物设计的典范,但更有效的二代药物已经开始作为一线药物获得认可。然而,由于缺乏完整的生存期数据,这些二代药物和格列卫相比所具有的优势还有待于进一步去发现。由于患者需要长时间治疗,毒性和成本的可控性更可能成为选择治疗药物的重要推动因素。治疗慢性粒细胞白血病的产品线首先侧重于解决耐药性问题,尤其是在一线药物治疗失败而三线药物又无法满足需求的情况下。如果患者使用酪氨酸激酶抑制剂有效,那么最终的问题是患者是否可以通过这些药物治愈。 相似文献
5.
C Drullion C Tr��goat V Lagarde S Tan R Gioia M Priault M Djavaheri-Mergny A Brisson P Auberger F-X Mahon J-M Pasquet 《Cell death & disease》2012,3(8):e373
Imatinib, the anti-Abl tyrosine kinase inhibitor used as first-line therapy in chronic myeloid leukemia (CML), eliminates CML cells mainly by apoptosis and induces autophagy. Analysis of imatinib-treated K562 cells reveals a cell population with cell cycle arrest, p27 increase and senescence-associated beta galactosidase (SA-β-Gal) staining. Preventing apoptosis by caspase inhibition decreases annexin V-positive cells, caspase-3 cleavage and increases the SA-β-Gal-positive cell population. In addition, a concomitant increase of the cell cycle inhibitors p21 and p27 is detected emphasizing the senescent phenotype. Inhibition of apoptosis by targeting Bim expression or overexpression of Bcl2 potentiates senescence. The inhibition of autophagy by silencing the expression of the proteins ATG7 or Beclin-1 prevents the increase of SA-β-Gal staining in response to imatinib plus Z-Vad. In contrast, in apoptotic-deficient cells (Bim expression or overexpression of Bcl2), the inhibition of autophagy did not significantly modify the SA-β-Gal-positive cell population. Surprisingly, targeting autophagy by inhibiting ATG5 is accompanied by a strong SA-β-Gal staining, suggesting a specific inhibitory role on senescence. These results demonstrate that in addition to apoptosis and autophagy, imatinib induced senescence in K562 CML cells. Moreover, apoptosis is limiting the senescent response to imatinib, whereas autophagy seems to have an opposite role. 相似文献
6.
7.
8.
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely diffi cult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless selfrenewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs. 相似文献
9.
10.
Danna Wei Tingting Lu Dan Ma Kunlin YU Xinyao Li Bingqing Chen Ji Xiong Tianzhuo Zhang Jishi Wang 《Journal of cellular physiology》2019,234(4):5252-5263
Resistance towards imatinib (IM) remains troublesome in treating many chronic myeloid leukemia (CML) patients. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism in association with cell resistance to apoptosis. Our previous studies have shown that overexpression of HO-1 resulted in resistance development to IM in CML cells, while the mechanism remains unclear. In the current study, the IM-resistant CML cells K562R indicated upregulation of some of the histone deacetylases (HDACs) compared with K562 cells. Therefore, we herein postulated HO-1 was associated with HDACs. Silencing HO-1 expression in K562R cells inhibited the expression of some HDACs, and the sensitivity to IM was increased. K562 cells transfected with HO-1 resisted IM and underwent obvious some HDACs. These findings related to the inhibitory effects of high HO-1 expression on the reactive oxygen species (ROS) signaling pathway that negatively regulated HDACs. Increased expression of HO-1 activated HDACs by inhibiting ROS production. In summary, HO-1, which is involved in the development of drug resistance in CML cells by regulating the expression of HDACs, is probably a novel target for improving CML therapy. 相似文献
11.
12.
13.
A 36-year-old man suffering from chronic myeloid leukemia (in chronic phase) was initially treated with busulphan. At the
end of 6 months of follow-up he developed bone marrow aplasia. He was given single foetal liver infusion therapy. The patient
recovered fully from aplasia. He continued in chronic phase for more than 7 years with intermittent busulphan therapy. 相似文献
14.
《Cell cycle (Georgetown, Tex.)》2013,12(17):2839-2848
Imatinib induces a complete cytogenetic regression in a large percentage of patients affected by chronic myeloid leukemia (CML) until mutations in the kinase domain of BCR-ABL appear. Alternative strategies for CML patients include the inhibition of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which is constitutively activated in leukemia cells and seems important for the regulation of cell proliferation, viability, and autophagy. In this study, we verified the effect of imatinib mesylate (IM), alone or in association with LY294002 (LY) (a specific PI3K protein tyrosine kinase inhibitor) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) (a Src tyrosine kinase inhibitor), on viability, intracellular calcium mobilization, apoptosis, and autophagy, in order to verify possible mechanisms of interaction. Our data demonstrated that PP1 and LY interact synergistically with IM by inducing apoptosis and autophagy in Bcr/Abl+ leukemia cells and this mechanism is related to the stress of the endoplasmic reticulum (ER). Our findings suggest a reasonable relationship between apoptotic and autophagic activity of tyrosine kinase inhibitors (TKIs) and the functionality of smooth ER Ca2+-ATPase and inositol triphosphate receptors, independently of intracellular calcium levels. Therapeutic strategies combining imatinib with PI3K and/or Src kinase inhibitors warrant further investigations in Bcr/Abl+ malignancies, particularly in the cases of imatinib mesylate-resistant disease. 相似文献
15.
Himansu Kumar Utkarsh Raj Saurabh Gupta 《Journal of biomolecular structure & dynamics》2016,34(10):2171-2183
Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML. 相似文献
16.
Manuela Mancini Sara Petta Giovanni Martinelli Enza Barbieri Maria A. Santucci 《Journal of cellular biochemistry》2010,109(2):320-328
The mammalian target of rapamycin (mTOR) is one target of BCR‐ABL fusion gene of chronic myeloid leukemia (CML). Moreover, it drives a compensatory route to Imatinib mesylate (IM) possibly involved in the progression of leukemic progenitors towards a drug‐resistant phenotype. Accordingly, mTOR inhibitors are proposed for combined therapeutic strategies in CML. The major caveat in the use of mTOR inhibitors for cancer therapy comes from the induction of an mTOR‐phosphatidylinositol 3 kinase (PI3k) feedback loop driving the retrograde activation of Akt. Here we show that the rapamycin derivative RAD 001 (everolimus, Novartis Institutes for Biomedical Research) inhibits mTOR and, more importantly, revokes mTOR late re‐activation in response to IM. RAD 001 interferes with the assembly of both mTOR complexes: mTORC1 and mTORC2. The inhibition of mTORC2 results in the de‐phosphorylation of Akt at Ser473 in the hydrophobic motif of C‐terminal tail required for Akt full activation and precludes Akt re‐phosphorylation in response to IM. Moreover, RAD 001‐induced inhibition of Akt causes the de‐phosphorylation of tuberous sclerosis tumor suppressor protein TSC2 at 14‐3‐3 binding sites, TSC2 release from 14‐3‐3 sigma (restoring its inhibitory function on mTORC1) and nuclear import (promoting the nuclear translocation of cyclin‐dependent kinase [CDK] inhibitor p27Kip1, the stabilization of p27Kip1 ligand with CDK2, and the G0/G1 arrest). RAD 001 cytotoxicity on cells not expressing the BCR‐ABL fusion gene or its p210 protein tyrosine kinase (TK) activity suggests that the inhibition of normal hematopoiesis may represent a drug side effect. J. Cell. Biochem. 109: 320–328, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
17.
18.
Monocytic myeloid‐derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib 下载免费PDF全文
Cesarina Giallongo Nunziatina L. Parrinello Piera La Cava Giuseppina Camiolo Alessandra Romano Marina Scalia Fabio Stagno Giuseppe A. Palumbo Roberto Avola Giovanni Li Volti Daniele Tibullo Francesco Di Raimondo 《Journal of cellular and molecular medicine》2018,22(2):1070-1080
Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M‐MDSC). Moreover, a positive correlation was observed between number of persistent M‐MDSC and the value of major molecular response in dasatinib‐treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M‐MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M‐MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. 相似文献
19.
Chronic myeloid leukemia (CML) is an acquired neoplastic hematopoietic stem cell (HSC) disorder characterized by the expression of the BCR-ABL oncoprotein. This gene product is necessary and sufficient to explain the chronic phase of CML. The only known cause of CML is radiation exposure leading to a mutation of at least one HSC, although the vast majority of patients with CML do not have a history of radiation exposure. Nonetheless, in humans, significant radiation exposure (after exposure to atomic bomb fallout) leads to disease diagnosis in 3-5 years. In murine models, disease dynamics are much faster and CML is fatal over the span of a few months. Our objective is to develop a model that accounts for CML across all mammals. In the following, we combine a model of CML dynamics in humans with allometric scaling of hematopoiesis across mammals to illustrate the natural history of chronic phase CML in various mammals. We show how a single cell can lead to a fatal illness in mice and humans but a higher burden of CML stem cells is necessary to induce disease in larger mammals such as elephants. The different dynamics of the disease is rationalized in terms of mammalian mass. Our work illustrates the relevance of animal models to understand human disease and highlights the importance of considering the re-scaling of the dynamics that accrues to the same biological process when planning experiments involving different species. 相似文献
20.