首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmural distribution of low molecular weight iron (LMWI), total iron, and protein carbonyls (PC) was investigated in the perfused rabbit heart under aerobic conditions, and after 60 min hypoxia followed or not by 3 min reoxygenation. In the aerobic perfused hearts, LMWI, total iron and PC did not show significant transmural differences. Hypoxia increased LMWI and PC levels, which were significantly higher in the subendocardium than in the subepicardium; further significant changes were not observed after reoxygenation. Total iron showed no transmural difference and was not significantly affected by both hypoxia and reoxygenation. Free iron was undetectable in the myocardial effluent of all experimental groups. Thus, hypoxia favors myocardial iron decompartmentalisation and oxidative stress, which are significantly greater in the inner than in the outer ventricular layers. Such findings may add further insight into the problem of the vulnerability of the mammalian subendocardium to injury induced by oxygen deprivation.  相似文献   

2.
Roudier E  Bachelet C  Perrin A 《The FEBS journal》2007,274(19):5188-5198
Pyruvate is located at a crucial crossroad of cellular metabolism between the aerobic and anaerobic pathways. Modulation of the fate of pyruvate, in one direction or another, can be important for adaptative response to hypoxia followed by reoxygenation. This could alter functioning of the antioxidant system and have protective effects against DNA damage induced by such stress. Transient hypoxia and alterations of pyruvate metabolism are observed in tumors. This could be advantageous for cancer cells in such stressful conditions. However, the effect of pyruvate in tumor cells is poorly documented during hypoxia/reoxygenation. In this study, we showed that cells had a greater need for pyruvate during hypoxia. Pyruvate decreased the number of DNA breaks, and might favor DNA repair. We demonstrated that pyruvate was a precursor for the biosynthesis of glutathione through oxidative metabolism in HepG2 cells. Therefore, glutathione decreased during hypoxia, but was restored after reoxygenation. Pyruvate had beneficial effects on glutathione depletion and DNA breaks induced after reoxygenation. Our results provide more evidence that the alpha-keto acid promotes the adaptive response to hypoxia followed by reoxygenation. Pyruvate might thus help to protect cancer cells under such stressful conditions, which might be harmful for patients with tumors.  相似文献   

3.
Feng B  Liu W  Xu J  He ZY  Yang HB 《生理学报》2005,57(5):636-642
心肌细胞凋亡是心肌肥大向心力衰竭转化的重要机制,因此,抑制肥大心肌细胞凋亡可能是防治心力衰竭的有 效药物靶点之一。本研究以0.1μmol/L血管紧张素Ⅱ和1 μmol/L去甲肾上腺素刺激培养心肌细胞,复制心肌细胞肥大模 型,用三气孵箱培养。缺氧条件是95%N2和5%CO2,控制氧分压低于5 mmHg以下,8 h后常氧培养,液闪计数法测 定丙酮酸脱氢酶(pyruvate dehydrogenase,PDH)和肉碱脂酰转移酶-1(carnitine palmitoyltransferase 1,CPT-1)活性,糖氧化、 糖酵解、脂肪酸氧化率,以及细胞凋亡百分率,分析肥大心肌细胞能量代谢变化与细胞凋亡间的关系。结果如下:(1)与 常氧培养比较,缺氧8 h后,活化型丙酮酸脱氢酶(PDHa)和CPT-1活性均有显著下降,但复氧早期肥大心肌细胞PDHa活 性有轻度进一步降低(P>0.05),而CPT-1活性却较快恢复。(2)缺氧时,正常和肥大心肌细胞葡萄糖氧化代谢率均有降低[分 别下降(16±0.9)%、(48±1.1)%];复氧时,正常心肌细胞糖氧化代谢较快恢复,而肥大心肌细胞在复氧早期,糖氧化 率进一步降低,此后才逐渐恢复。(3)在缺氧时,肥大心肌细胞糖酵解率仅轻度下降,但在复氧后糖酵解率迅速升高,呈 爆发样达峰值后又逐渐恢复到缺氧前水平。(4)肥大心肌细胞在缺氧后脂肪酸代谢明显降低,但复氧后脂肪酸代谢呈爆发式 上升,并大大高于缺血前的代谢水平。(5)缺氧时肥大心肌细胞凋亡率即显著增加,在复氧早期细胞凋亡率继续大幅度上 升,此后逐渐减少。(6)预先用二氯乙酸处理肥大心肌细胞,可显著逆转缺氧复氧导致的细胞糖氧化受抑、糖酵解和脂肪 酸代谢活化,同时,抑制细胞凋亡的发生。上述结果提示,缺氧复氧后的肥大心肌细胞能量代谢途径转换是导致细胞凋 亡的重要原因。  相似文献   

4.
There is a sudden release of intracellular constituents upon reoxygenation of isolated perfused hypoxic heart tissue (O2 paradox) or on perfusion with calcium-free medium after a period of hypoxia. Rat hearts were perfused by the method of Langendorff (Pfluegers Arch. 61: 291-332, 1895) with Krebs-Henseleit medium containing 10 mM glucose. Hearts were equilibrated for 30 min, followed by 90 min of hypoxia or 60 min of hypoxia and 30 min of reoxygenation. The massive enzyme release observed upon reoxygenation after 60 min of hypoxia was prevented by infusing 0.5 or 5 mM cyanide 5 min before reoxygenation. Lactate dehydrogenase (LDH) release commenced immediately upon withdrawal of cyanide. Hearts perfused with calcium-free medium throughout hypoxia did not release increased amounts of LDH at reoxygenation. Perfusing heart tissue with medium containing 0 or 25 microM calcium, but not 0.25 or 2.5 mM, after 50 min of hypoxia initiated a release of cardiac LDH, which was not further enhanced by reoxygenation. Enzyme release was significantly inhibited when the calcium-free perfusion medium included 10 mM 2-deoxyglucose (replacing glucose), 0.5 mM dinitrophenol, or 2.5 mM cyanide. Histologically, hearts perfused with calcium-free medium after 50 min of hypoxia showed areas of severe necrosis and contracture without any evidence of the contraction bands that were seen in hearts reoxygenated in the presence of calcium. Cardiac ATP and creatine phosphate (PCr) levels were significantly decreased after 50-60 min of hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Effects of oxygen radicals on substrate oxidation by cardiac myocytes   总被引:1,自引:0,他引:1  
Freshly isolated adult rat heart cells were used to study the effects of oxygen-free radicals on the myocardial oxidation of different substrates. The calcium-tolerant quiescent cells were incubated with xanthine plus xanthine oxidase as the source of free radicals. The oxidation of exogenous glucose, lactate and octanoate was severely inhibited (approx. 70%) by products of xanthine oxidase activity. Superoxide dismutase plus catalase effectively prevented the inhibition of oxidation. Cellular high energy phosphate levels were decreased in the presence of the oxygen free radical generating system although cell viability determined by Trypan blue exclusion and light microscopic assessment of normal morphology was not affected. These data suggest that oxygen free radicals decrease myocardial substrate oxidation which may contribute to the functional and ultrastructural changes in the myocardium under conditions such as reoxygenation after hypoxia and reperfusion after ischemia.  相似文献   

6.
The present study examined the acute effects of hypoxia on the regulation of skeletal muscle metabolism at rest and during 15 min of submaximal exercise. Subjects exercised on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake while breathing 11% O(2) (hypoxia) or room air (normoxia). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to hypoxia. In the 1st min of exercise, glycogenolysis was significantly greater in hypoxia compared with normoxia. This small difference in glycogenolysis was associated with a tendency toward a greater concentration of substrate, free P(i), in hypoxia compared with normoxia. Pyruvate dehydrogenase activity (PDH(a)) was lower in hypoxia at 1 min compared with normoxia, resulting in a reduced rate of pyruvate oxidation and a greater lactate accumulation. During the last 14 min of exercise, glycogenolysis was greater in hypoxia despite a lower mole fraction of phosphorylase a. The greater glycogenolytic rate was maintained posttransformationally through significantly higher free [AMP] and [P(i)]. At the end of exercise, PDH(a) was greater in hypoxia compared with normoxia, contributing to a greater rate of pyruvate oxidation. Because of the higher glycogenolytic rate in hypoxia, the rate of pyruvate production continued to exceed the rate of pyruvate oxidation, resulting in significant lactate accumulation in hypoxia compared with no further lactate accumulation in normoxia. Hence, the elevated lactate production associated with hypoxia at the same absolute workload could in part be explained by the effects of hypoxia on the activities of the rate-limiting enzymes, phosphorylase and PDH, which regulate the rates of pyruvate production and pyruvate oxidation, respectively.  相似文献   

7.
Relating Cerebral Ischemia and Hypoxia to Insult Intensity   总被引:2,自引:1,他引:1  
The contributions of five variables believed to influence the brain's metabolism of O2 during hypoxia [duration, PaO2, delta CMRO2 (the difference between normal and experimental oxygen uptake), O2 availability (blood O2 content.CBF), and O2 deficit (delta CMRO2.duration)] were assessed by stepwise and multiple linear regression. Levels of brain tissue carbohydrates (lactate, glucose, and glycogen) and energy metabolites [ATP, AMP, and creatine phosphate (CrP)] were significantly influenced by O2 deficit during hypoxia, as was final CMRO2. After 60 min of reoxygenation, levels of tissue lactate, glucose, ATP, and AMP were related statistically to the O2 deficit during hypoxia; however, CMRO2 changes were always associated more significantly with O2 availability during hypoxia. Creatine (Cr) and CrP levels in the brain following reoxygenation were correlated more to delta CMRO2 during hypoxia. Changes in some brain carbohydrate (lactate and glucose), energy metabolite (ATP and AMP) levels, and [H+]i induced by complete ischemia were also influenced by O2 deficit. After 60 min of postischemic reoxygenation, brain carbohydrate (lactate, glucose, and glycogen) and energy metabolite (ATP, AMP, CrP, and Cr) correlated with O2 deficit during ischemia. We conclude that "O2 deficit" is an excellent gauge of insult intensity which is related to observed changes in nearly two-thirds of the brain metabolites we studied during and following hypoxia and ischemia.  相似文献   

8.
1. This study was performed to compare both the Ca(2+)-dependent nitric oxide synthase (NOS) activity and the neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the rabbit lumbosacral spinal cord after 15 min abdominal aorta occlusion (ischemia in vivo) and oxygen-glucose deprivation of the spinal cord slices for 45 and 60 min (ischemia in vitro). All ischemic periods were followed by 15, 30 and 60 min reoxygenation in vitro. 2. Catalytic nitric oxide synthase activity was determined by the conversion of (L)-[(14)C]arginine to (L)-[(14)C]citrulline. Neuronal nitric oxide synthase immunoreactivity in the spinal cord was detected by incubation of sections with polyclonal sheep-nNOS-primary antibody and biotinylated anti-sheep secondary antibody. 3. Our results show that ischemia in vivo and the oxygen-glucose deprivation of spinal cord slices in vitro result in a time-dependent loss of constitutive NOS activity with a partial restoration of enzyme activity during 15 and 45 min ischemia followed by 30 min of reoxygenation. A significant decrease of enzyme activity was found during 60 min ischemia alone, which persisted up to 1 h of oxygen-glucose restoration. The upregulation of neuronal nitric oxide synthase was observed in the ventral horn motoneurons after all ischemic periods. The remarkable changes in optical density of neuronal nitric oxide synthase immunoreactive motoneurons were observed after 45 and 60 min ischemia in vitro followed by 30 and 60 min reoxygenation. 4. Our results suggest that the oxygen-glucose deprivation followed by reoxygenation in the spinal cord is adequately sensitive to monitor ischemia/reperfusion changes. It seems that 15 min ischemia in vivo and 45 min ischemia in vitro cause reversible changes, while the decline of Ca(2+)-dependent nitric oxide synthase activity after 60 min ischemic insult suggests irreversible alterations.  相似文献   

9.
The objective of this study was to determine the interaction between duration of myocardial hypoxia and presence of exogenous glutathione (GSH) on functional recovery upon subsequent reoxygenation. Isolated perfused rat hearts were subjected to 20, 30, 40, or 50 min hypoxia (HYP), which resulted in a progressive decline in the amount of contractile recovery (% of normoxic rate-pressure product (RPP) and developed pressure) during 30 min reoxygenation. Supplementation with 5 mM GSH throughout normoxia, hypoxia, and reoxygenation significantly improved contractile recovery during reoxygenation after 20 and 30 min hypoxia (p < 0.05), but had no effect after longer durations of hypoxia when contractile recovery was typically below 40% of RPP and significant areas of no-reflow were observed. ECG analysis revealed that GSH shifted the bell-shaped curve for reperfusion ventricular fibrillation to the right resulting in attenuated fibrillation after 20 and 30 min hypoxia then increased incidences after 40 min when Control hearts were slow to resume electrical activity. ECG conduction velocity was well preserved in all hearts after 20 and 30 min hypoxia, but GSH administration significantly attenuated the decline that occurred with longer durations. GSH supplementation did not attenuate the 35% decline in intracellular thiols during 30 min of hypoxia. When 5 mM GSH was added only during 40 min of hypoxia, RPP recovery after reoxygenation was improved compared to unsupplemented Controls (73% vs. 55% of pre-hypoxia value, p < 0.05). Administration of GSH only during reoxygenation following 40 min of hypoxia did not alter RPP recovery compared to Control hearts. We conclude that cardioprotection by exogenous GSH is dependent on the duration of hypoxia and the functional parameter being evaluated. It is not due to an enhancement of intracellular GSH suggesting that exogenous GSH acts extracellularly to protect sarcolemmal proteins against thiol oxidation during the phase of hypoxia when oxidative stress is a major contributor to cardiac dysfunction. Furthermore, if enough damage accrues during oxygen deprivation, supplementing with GSH during reoxygenation will not impact recovery.  相似文献   

10.
We investigated whether the antiepileptic valproic acid (VPA) might interfere with oxidative metabolism in heart, as it does in liver. We administered VPA to working rat hearts perfused with radiolabeled carbohydrate and fatty acid fuels. Measurements included oxidation rates of (i) glucose, pyruvate, or lactate in the presence of palmitate and (ii) palmitate, octanoate, or butyrate in the presence of glucose. Oxidation rates were quantified as the rate of appearance of 14CO2 or 3H2O from 14C- or 3H-labeled substrates. In hearts perfused with palmitate, VPA (1 mmol/L) strongly inhibited the oxidation of pyruvate and lactate but slightly stimulated the oxidation of glucose. VPA also inhibited lactate or pyruvate uptake into erythrocytes in vitro. In hearts perfused with glucose, VPA strongly inhibited the oxidation of palmitate and octanoate but had no effect on butyrate oxidation. The absence of valproate CoA ligase activity in cell-free homogenates indicated that the inhibition of fatty acid oxidation by VPA did not require prior activation to valproyl-CoA. The results are consistent with the hypothesis that VPA selectively interferes with myocardial fuel oxidation by mechanisms that are independent of conversion to the CoA thioester.  相似文献   

11.
The objective of this study was to determine the interaction between duration of myocardial hypoxia and presence of exogenous glutathione (GSH) on functional recovery upon subsequent reoxygenation. Isolated perfused rat hearts were subjected to 20, 30, 40, or 50 min hypoxia (HYP), which resulted in a progressive decline in the amount of contractile recovery (% of normoxic rate-pressure product (RPP) and developed pressure) during 30 min reoxygenation. Supplementation with 5 mM GSH throughout normoxia, hypoxia, and reoxygenation significantly improved contractile recovery during reoxygenation after 20 and 30 min hypoxia (p < 0.05), but had no effect after longer durations of hypoxia when contractile recovery was typically below 40% of RPP and significant areas of no-reflow were observed. ECG analysis revealed that GSH shifted the bell-shaped curve for reperfusion ventricular fibrillation to the right resulting in attenuated fibrillation after 20 and 30 min hypoxia then increased incidences after 40 min when Control hearts were slow to resume electrical activity. ECG conduction velocity was well preserved in all hearts after 20 and 30 min hypoxia, but GSH administration significantly attenuated the decline that occurred with longer durations. GSH supplementation did not attenuate the 35% decline in intracellular thiols during 30 min of hypoxia. When 5 mM GSH was added only during 40 min of hypoxia, RPP recovery after reoxygenation was improved compared to unsupplemented Controls (73% vs. 55% of pre-hypoxia value, p < 0.05). Administration of GSH only during reoxygenation following 40 min of hypoxia did not alter RPP recovery compared to Control hearts. We conclude that cardioprotection by exogenous GSH is dependent on the duration of hypoxia and the functional parameter being evaluated. It is not due to an enhancement of intracellular GSH suggesting that exogenous GSH acts extracellularly to protect sarcolemmal proteins against thiol oxidation during the phase of hypoxia when oxidative stress is a major contributor to cardiac dysfunction. Furthermore, if enough damage accrues during oxygen deprivation, supplementing with GSH during reoxygenation will not impact recovery.  相似文献   

12.
Glucose metabolism is depressed in aortic intima-media of fasted and diabetic rats. The aim of this study was to elucidate the influence of diabetic and fasted plasma on glucose oxidation in rat aorta. Male Sprague-Dawley rats weighing about 200 g were used. Diabetes was induced by streptozotocin (65 mg/kg) and the rats were used after a diabetes duration of two weeks. Fasted rats were used after food deprivation for 3 days. Aortic intima-media was preincubated in plasma for 120 or 240 min. During a further incubation for 2 hours in Krebs-Henseleit bicarbonate buffer the oxidation of 14C-glucose to 14CO2 was measured. Preincubation of normal aorta in diabetic or fasted rat plasma and diabetic human plasma significantly depressed the subsequently determined glucose oxidation in comparison to aorta preincubated in normal plasma. Preincubation of aorta from diabetic or fasted rats in normal rat plasma enhanced the glucose oxidation compared with the glucose oxidation in aorta of diabetic or fasted rats after preincubation in the corresponding plasma. These results suggest that diabetic and fasted plasma contains factor(s) which in vitro depress glucose oxidation in vascular smooth muscle and, thus, may be of importance for the lowered glucose oxidation found in vascular smooth muscle preparations obtained from diabetic or fasted animals.  相似文献   

13.
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.  相似文献   

14.
Brain ischemia causes neuronal cell death by several mechanisms involving necrotic and apoptotic processes. The contributions of each process depend on conditions such as the severity and duration of ischemia, and the availability of ATP. We examined whether glucose affected the development of apoptosis after transient ischemia, and whether this was sensitive to caspase inhibition. Retinoic acid-differentiated SH-SY5Y human neuroblastoma cells were subjected to oxygen and glucose deprivation for 15 h followed by various periods of reoxygenation in either the presence or absence of glucose. Oxygen and glucose deprivation induced cell death in the hours following reoxygenation, as detected by propidium iodide staining. At the end of the period of oxygen and glucose deprivation, both cytochrome c and apoptosis-inducing factor translocated from mitochondria to cytosol. Reoxygenation in the presence of glucose accelerated cell death, and enhanced caspase-3 activity and apoptosis. The glucose-dependent increase in apoptosis was prevented by treatment with the caspase inhibitor zVAD-fmk, but not with calpeptin, a calpain inhibitor. Nevertheless, both zVAD-fmk and calpeptin decreased cell death in the glucose-treated group. ATP levels dropped dramatically after oxygen and glucose deprivation, but recovered steadily thereafter, and were significantly higher at 6 h of reoxygenation in the glucose-treated group. This indicates that energy recovery may promote the glucose-dependent cell death. We conclude that glucose favours the development of caspase-dependent apoptosis during reoxygenation following oxygen and glucose deprivation.  相似文献   

15.
In order to investigate the potential neuroprotective role played by glucose metabolism during brain oxygen deprivation, the susceptibility of cultured neurones and astrocytes to 1 h of oxygen deprivation (hypoxia) or oxygen and glucose deprivation (OGD) was examined. OGD, but not hypoxia, promotes dihydrorhodamine 123 and glutathione oxidation in neurones but not in astrocytes reflecting free radical generation in the former cells. A specific loss of mitochondrial complex-I activity, mitochondrial membrane potential collapse, ATP depletion and necrosis occurred in the OGD neurones, but not in the OGD astrocytes. Furthermore, superoxide anion but not nitric oxide formation was responsible for these effects. OGD decreased neuronal but not astrocytic NADPH concentrations; this was not observed in hypoxia and was independent of superoxide or nitric oxide formation. These results suggest that glucose metabolism would supply NADPH, through the pentose-phosphate pathway, aimed at preventing oxidative stress, mitochondrial damage and neurotoxicity during oxygen deprivation to neural cells.  相似文献   

16.
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

17.
《Free radical research》2013,47(1-5):69-78
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

18.
The objective of this study was to test the effect of increasing fatty acid concentrations on substrate fluxes through pathways leading to citrate synthesis and release in the heart. This was accomplished using semirecirculating work-performing rat hearts perfused with substrate mixtures mimicking the in situ milieu (5.5 mM glucose, 8 nM insulin, 1 mM lactate, 0.2 mM pyruvate, and 0.4 mM oleate-albumin) and 13C methods. Raising the fatty acid concentration from 0.4 to 1 mM with long-chain oleate or medium-chain octanoate resulted in a lowering ( approximately 20%) of cardiac output and efficiency with unaltered O2 consumption. At the metabolic level, beyond the expected effects of high fatty acid levels on the contribution of pyruvate decarboxylation (reduced >3-fold) and beta-oxidation (enhanced approximately 3-fold) to citrate synthesis, there was also a 2.4-fold lowering of anaplerotic pyruvate carboxylation. Despite the dual inhibitory effect of high fatty acids on pyruvate decarboxylation and carboxylation, tissue citrate levels were twofold higher, but citrate release rates remained unchanged at 11-14 nmol/min, representing <0.5% of citric acid cycle flux. A similar trend was observed for most metabolic parameters after oleate or octanoate addition. Together, these results emphasize a differential modulation of anaplerotic pyruvate carboxylation and citrate release in the heart by fatty acids. We interpret the lack of effects of high fatty acid concentrations on citrate release rates as suggesting that, under physiological conditions, this process is maximal, probably limited by the activity of its mitochondrial or plasma membrane transporter. Limited citrate release at high fatty acid concentrations may have important consequences for the heart's fuel metabolism and function.  相似文献   

19.
Ischemia limits the delivery of oxygen and glucose to cells and disturbs the maintenance of mitochondrial membrane potential (MMP). MMP regulates the production of high-energy phosphate and apoptotic cascading. Thus, MMP is an important parameter determining the fate of neurons. Differences in the time course of MMP according to the grading of the ischemic impact have not been clarified. MMP and intracellular ATP contents were monitored before and after short-term oxygen-glucose deprivation. A primary hippocampal culture seeded in a 35 mm fenestrated dish for fluorescence microscopy was mounted in a sealed chamber for an anaerobic incubation. A continuous flow of 100% nitrogen into the chamber and a replacement of glucose-free medium allowed the condition of oxygen-glucose deprivation (OGD), thereby extrapolating ischemia. MMP was evaluated by the fluorescence of a voltage-dependent dye, JC-1, under fluorescence microscopy. The intracellular ATP content was evaluated in a hippocampal culture seeded in a 96-well plate by the luciferin-luciferase reaction after a designated period of OGD. During OGD, MMP decreased to 0.72+/-0.03 (normalized JC-1 fluorescence), then increased to the hyperpolarized level 1.99+/-0.12 during 60 min reoxygenation after 30 min OGD. MMP after 60 min OGD decreased and recovered occasionally during reoxygenation. After 90 min OGD and reoxygenation, MMP was reduced and never recovered. The intracellular ATP content was 8.1+/-6.6 and 3.2+/-1.9% after 30 min OGD and 30 min reoxygenation following 30 min OGD, respectively; 60 min OGD did not significantly change these levels (7.1+/-5.8, 2.6+/-0.5%). Hyperpolarization after OGD did not accompany ATP production. This observation suggests the inhibition of electron reentry into an inner membrane during reoxygenation and the disturbance of FoF1-ATP synthase. This pathological finding of an energy-producing system after OGD may provide a clue to explain post-ischemic energy failure.  相似文献   

20.
Rat lung glucose metabolism after 24 h of exposure to 100% oxygen   总被引:1,自引:0,他引:1  
Previous studies with lung homogenates and isolated cells have suggested oxygen cell injury results from the inhibition of key enzymes involved in both cytosolic and mitochondrial energy generation. In this study, the extent and pattern of metabolism of D-[U-14C, 5-3H]glucose was examined in perfused lungs isolated from rats before and after 24 h of in vivo exposure to 100% O2. Lung ATP levels after O2 exposure were maintained by a 53% increase in glucose utilization from an unexposed control value of 18.0 +/- 3.2 to 27.5 +/- 3.0 mumol 3H2O.h-1.g dry wt-1, accounted for by an enhanced rate of lactate plus pyruvate production from 15.7 +/- 2.0 to 32.7 +/- 4.1 mumol.h-1.g dry wt-1 with no alteration in lactate-to-pyruvate ratio. CO2 production was unaltered from a control rate of 27.5 +/- 4.0 14CO2 mumol.h-1.g dry wt-1. Maximal rates of glucose metabolism were determined by perfusion with 0.8 mM dinitrophenol, giving for air-exposed lungs a rate of 53.5 +/- 5.0 mumol 3H2O.h-1.g dry wt-1 and increased lactate plus pyruvate and 14CO2 production rates of 46.5 +/- 6.5 and 128.3 +/- 19.6 mumol.h-1.g dry wt-1, respectively. Although this maximal rate of glucose utilization was unaltered in oxygen-exposed lungs, lactate plus pyruvate production was further increased to 80.0 +/- 9.1 mumol.h-1.g dry wt-1 with a concomitant decrease in the dinitrophenol-induced rate of 14CO2 production to 81.5 +/- 9.2 mumol.h-1.g dry wt-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号