首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Previous studies have shown that 5-hydroxytryptamine (5-HT) can potently inhibit glutamatergic transmission in rat cerebellum through the activation of multiple 5-HT receptors. The aim of this study was to subclassify the 5-HT2 receptor mediating inhibition of the cyclic GMP response elicited by N -methyl- d -aspartate in adult rat cerebellar slices. Seven receptor antagonists, endowed with relative selectivities for the 5-HT2A, 5-HT2B, and 5-HT2C subtypes, differentially affected the inhibition by (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane of the cyclic GMP response, suggesting that the receptor involved belongs to the 5-HT2C subtype.  相似文献   

2.
Abstract: To assess the involvement of the serotonin receptor subtype 5-HT1B as terminal autoreceptor regulating 5-HT release in mice, we compared basal values and potassium-evoked changes of extracellular 5-HT levels obtained by in vivo microdialysis in two serotoninergic terminal projection areas of conscious wild-type mice with those measured in homozygous mutant mice lacking the gene encoding the 5-HT1B receptor. In the frontal cortex and ventral hippocampus, basal and K+-evoked 5-HT release did not differ between the two strains of mice studied. The infusion via reverse microdialysis of the selective 5-HT1B receptor agonist CP-93,129 (500 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −44%) and ventral hippocampus (by −32%) of wild-type mice but had no effect in mutants. In a similar manner, the mixed 5-HT1B-5-HT1D receptor agonist sumatriptan (800 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −46%) of wild-type mice but had no effect in mutants. These results demonstrated that 5-HT1B knockout mice are not as sensitive to full (CP-93,129) and mixed (sumatriptan) 5-HT1B receptor agonists as are wild-type mice. These data provide in vivo evidence that, in mice, 5-HT1B, but not 5-HT1D, autoreceptors inhibit 5-HT release at nerve terminals located in the frontal cortex and ventral hippocampus.  相似文献   

3.
Abstract: The effect of a 5-hydroxytryptamine7 (5-HT7) receptor-directed antisense oligonucleotide on rat behaviour and neuroendocrine function was investigated. Six days of intracerebroventricular 5-HT7 antisense oligonucleotide treatment significantly reduced [3H]5-HT binding to hypothalamic 5-HT7 receptors, whereas cortical 5-HT2C density remained unchanged. In rats on a food-restricted diet, both antisense and mismatch oligonucleotides reduced food intake and body weight compared with that in vehicle-treated controls by day 4 of administration. 5-HT7 antisense oligonucleotide administration did not affect exploratory or locomotor activity in photocell activity monitors on day 4 or elevated plus-maze behaviour on day 6 of intracerebroventricular treatment. 5-HT7 antisense oligonucleotide did not affect plasma corticosterone or prolactin levels or 5-HT turnover in either 5-HT cell body or terminal areas. These data demonstrate that intracerebroventricular 5-HT7 antisense oligonucleotide administration selectively reduced rat hypothalamic 5-HT7 receptor density without affecting any of the biochemical or behavioural measures. The results suggest that this antisense protocol could be a valuable tool to investigate central 5-HT7 receptor functions, and that this receptor is not critical for the control of neuroendocrine function or food intake.  相似文献   

4.
5.
Abstract: Cyclic GMP (cGMP) formation in rat pinealocytes is regulated through a synergistic dual receptor mechanism involving β-and α1-adrenergic receptors. The effects of N -monomethyl- l -arginine (NMMA), which inhibits nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase, and methylene blue (MB), which inhibits cytosolic guanylate cyclase, were investigated in an attempt to understand the role of NO in adrenergic cGMP formation. Both NMMA and MB inhibited β-adrenergic stimulation of cGMP formation as well as α1-adrenergic potentiation of β-adrenergic stimulation of cGMP formation, whereas they had no effect in unstimulated pinealocytes. The inhibitory action of NMMA was antagonized by addition of l -arginine. On the basis of these findings it can be concluded that the adrenergic stimulation of cGMP formation involves NO synthesis followed by activation of cytosolic guanylate cyclase.  相似文献   

6.
Abstract: Cooperation in the action of agonists suggests that there are multiple binding sites on 5-hydroxytryptamine3 (5-HT3) receptors. The purpose of this study was to characterize these binding sites and their interactions on both native and cloned 5-HT3 receptors. The affinities of competitive 5-HT3 receptor antagonists were similar regardless of whether the receptors were labeled with [3H]RS-42358, [3H]granisetron, or 1-( m -[3H]chlorophenyl)biguanide ([3H]mCPG). By contrast, the affinities of the agonists 5-HT, mCPG, and phenylbiguanide were approximately 10-fold higher when the receptors were labeled with [3H]mCPG. The dissociation of [3H]mCPG, [3H]RS-42358, and [3H]RS-25259, but not [3H]granisetron, from both cloned and native 5-HT3 receptors was markedly slower in the presence of 5-HT or 2-methyl-5-HT than in the presence of antagonists such as RS-42358. This suggests that the binding of these agonists to unoccupied sites on the receptor can increase the receptor's affinity for prebound ligands and thereby slow their dissociation. These data support previous indications of positive cooperation among multiple binding sites on both native and cloned 5-HT3 receptors, and they extend this idea by demonstrating that agonists can modify the interaction of some, but not all, antagonists with the receptor.  相似文献   

7.
Abstract : Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 {3H-labeled N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridyl)cyclohexanecarboxamide · 3HCl} binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

8.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

9.
10.
Abstract: Molecular cloning of the rat and human 5-hydroxytryptamine1B (5-HT1B) receptors has revealed that the primary amino acid sequence of these two receptors is >90% identical. Despite this high degree of primary sequence homology, these two receptors have significantly different pharmacological properties. A mutant human 5-HT1B receptor was constructed in which Thr355 was replaced by Asn, the corresponding residue at this position in the rat 5-HT1B receptor. The pharmacology of the mutant human 5-HT1B receptor was very similar to that of the rat 5-HT1B receptor. Specifically, the mutant receptor had much higher affinity for pindolol, [125I]-iodocyanopindolol, propranolol, and CP-93,129 than the wild-type receptor. In contrast, the mutant had significantly lower affinity for sumatriptan, N,N -dipropyl-5-carboxamidotryptamine, 5-methoxy- N,N -dimethyltryptamine, methysergide, metergoline, and rauwolscine. These data suggest that a single amino acid difference at position 355 is responsible for the pharmacological differences between the rat and human 5-HT1B receptors.  相似文献   

11.
Serotoninergic modulation of GABAergic mIPSCs was investigated in immature (postnatal 12–16-days old) rat CA3 pyramidal neurons using a conventional whole-cell patch clamp technique. Serotonin or 5-hydroxytryptamine (5-HT) (10 μmol/L) transiently and explosively increased mIPSC frequency with a small increase in the current amplitude. However, 5-HT did not affect the GABA-induced postsynaptic currents, indicating that 5-HT acts presynaptically to facilitate the probability of spontaneous GABA release. The 5-HT action on GABAergic mIPSC frequency was completely blocked by 100 nmol/L MDL72222, a selective 5-HT3 receptor antagonist, and mimicked by mCPBG, a selective 5-HT3 receptor agonist. The 5-HT action on GABAergic mIPSC frequency was completely occluded either in the presence of 200 μmol/L Cd2+ or in the Na+-free external solution, suggesting that the 5-HT3 receptor-mediated facilitation of mIPSC frequency requires a Ca2+influx passing through voltage-dependent Ca2+channels from the extracellular space, and that presynaptic 5-HT3 receptors are less permeable to Ca2+. The 5-HT action on mIPSC frequency in the absence or presence of extracellular Na+ gradually increased with postnatal development. Such a developmental change in the 5-HT3 receptor-mediated facilitation of GABAergic transmission would play important roles in the regulation of excitability as well as development in CA3 pyramidal neurons.  相似文献   

12.
Recent studies have indicated that the serotonin [5-hydroxytryptamine (5-HT)] 1E receptor, originally discovered in human brain tissue, is not expressed in rat or mouse brain. Thus, there have been few reports on 5-HT1E receptor drug development. However, expression of 5-HT1E receptor mRNA has been shown in guinea pig brain. To establish this species as an animal model for 5-HT1E drug development, we identified brain regions that exhibit 5-carboxyamidotryptamine, ritanserin, and LY344864 – insensitive [3H]5-HT binding (characteristic of the 5-HT1E receptor). In hippocampal homogenates, where 5-HT1E receptor density was sufficiently high for radioligand binding analysis, 100 nM 5-carboxyamidotryptamine, 30 nM ritanserin, and 100 nM LY344864 were used to mask [3H]5-HT binding at non-5-HT1E receptors. The K d of [3H]5-HT was 5.7 ± 0.7 nM and is indistinguishable from the cloned receptor K d of 6.5 ± 0.6 nM. The affinities of 16 drugs for the cloned and hippocampal-expressed guinea pig 5-HT1E receptors are essentially identical ( R 2 = 0.97). These findings indicate that using these conditions autoradiographical distribution and signal transduction studies of the 5-HT1E receptor in guinea pig brain are feasible. Using the guinea pig as an animal model should provide important insights into possible functions of this receptor and the therapeutic potential of selective human 5-HT1E drugs.  相似文献   

13.
Abstract: We investigated the rapid and slow effects of NaF on intracellular signaling systems such as Ca2+ homeostasis and cyclic GMP (cGMP) generation in rat glioma C6 cells, using the Ca2+-sensitive dye fura-2 and cGMP enzyme immunoassay. We found that the following: (a) NaF enhanced cGMP generation in a concentration-dependent manner. This enhancement was abolished by pretreatment with 100 µ M BAPTA tetraacetoxymethyl ester or in the presence of W-7 in a concentration-dependent manner. N G-Monomethyl- l -arginine (NMMA), a competitive inhibitor of nitric oxide synthase (NOS), also inhibited the NaF-induced generation of cGMP. These results suggest that NaF-induced cGMP generation occurs via a calcium/calmodulin- and NOS-dependent pathway. (b) The basal intracellular Ca2+ concentration ([Ca2+]i) was transiently greater at 1 and 3 h after pretreatment with NaF. W-7 and W-13 antagonized the increase in [Ca2+]i, whereas NMMA had little effect. This suggests that the NaF-induced change in basal [Ca2+]i was mediated by a calmodulin-dependent pathway but was independent of a NOS-sensitive pathway. (c) The serotonin (5-HT)-induced intracellular mobilization of Ca2+ was reduced by pretreating the cells with NaF. The reduction in Ca2+ mobilization was antagonized by genistein, a tyrosine kinase inhibitor. W-7, W-5, and H-8 had no effect. Results suggest that NaF differentially regulates the cGMP generation, basal [Ca2+]i, and 5-HT2A receptor function in C6 glioma cells.  相似文献   

14.
Abstract: We report here the molecular cloning of three new splice variants of the human serotonin 5-hydroxytryptamine4 (h5-HT4) receptor, which we named h5-HT4(b), h5-HT4(c), and h5-HT4(d). The sequence following the splicing site at Leu358 in the C-terminal tail of h5-HT4(b) displays a 74% protein identity with the same region in the long form of the rat 5-HT4 receptor (r5-HT4L) but is shorter by 18 amino acids compared to its rat counterpart. The splice variants h5-HT4(c) and h5-HT4(d) are the first of their kind to be described in any animal species. The C terminus of h5-HT4(c) displays a high number of putative phosphorylation sites. The h5-HT4(d) isoform corresponds to an ultrashort form of the receptor, with a truncation two amino acids after the splicing site. Tissue distribution studies revealed some degree of specificity in the pattern of expression of the different isoforms within the human body. The four splice variants transiently expressed in COS-7 cells displayed an identical 5-HT4 pharmacological profile and showed a similar ability to stimulate adenylyl cyclase activity in the presence of 5-HT. The stimulatory pattern of cyclic AMP formation in response to the 5-HT4 agonist renzapride was found to be significantly different between h5-HT4(a) and the other h5-HT4 isoforms, indicating that the splice variants may differ in the way they trigger the signal transduction cascade following receptor activation.  相似文献   

15.
Ultrastructure of the 5-Hydroxytryptamine3 Receptor   总被引:1,自引:0,他引:1  
Abstract: We have determined the ultrastructure of 5-hydroxytryptamine3 (5-HT3) serotonin receptors purified from NG108-15 mouse neuroblastoma × rat glioma cells by electron microscopic examination of receptor particles embedded in uranyl acetate stain and metal replicas of rapidly frozen receptors. The 5-HT3 receptor can be modelled as a cylinder 11 nm in length and 8 nm in diameter with a closed end and a central cavity 3 nm in diameter. Analysis of the rotational symmetry of single receptor particles indicates that the 5-HT3 receptor is composed of five subunits arranged symmetrically around a central cavity. Together with evidence obtained for related proteins in other studies using ultrastructural, biochemical, or electrophysiological methods, our observations suggest that all members of the ligand-gated ion channel superfamily may possess a pentameric quaternary structure.  相似文献   

16.
Abstract: The serotonin (5-HT) releaser d -fenfluramine and its active metabolite d -norfenfluramine, or the 5-HT-uptake inhibitor citalopram, by increasing synaptic 5-HT availability, facilitated in vivo release of acetylcholine (ACh) from dorsal hippocampi of freely moving rats as determined by the microdialysis technique. The effects of d -norfenfluramine (7.5 mg/kg i.p.) and citalopram (10 μ M , applied by reverse dialysis) were prevented by a 14-day chemical lesion of the raphe nuclei, suggesting mediation by the 5-HT system in the cholinergic action of the drugs. The increase in extracellular ACh content induced by d -norfenfluramine (5 mg/kg i.p.) was antagonized by the 5-HT3 receptor antagonists tropisetron (0.5 mg/kg i.p.) and DAU 6215 (60 μg/kg i.p.), but not by the mixed 5-HT1 and 5-HT2 receptor antagonist metergoline (2 mg/kg s.c.). In accordance with an involvement of the 5-HT3 receptor in the ACh facilitation induced by d-norfenfluramine is the finding that the selective 5-HT3 receptor agonist 2-methyl-serotonin (250 μg i.c.v., or 10 μ M applied by reverse dialysis) raised ACh release. The effect of the intracerebroventricular drug was prevented by the 5-HT3 antagonists DAU 6215 (60 μg/kg i.p.) and ondansetron (60 μg/kg s.c.). These antagonists by themselves did not modify the basal ACh release, indicating that 5-HT does not tonically activate the 5-HT3 receptors involved. In conclusion, the overall regulatory control exerted by 5-HT in vivo is to facilitate hippocampal ACh release. This is mediated by 5-HT3 receptors probably located in the dorsal hippocampi.  相似文献   

17.
Abstract: 5-Hydroxytryptamine elicits its physiological effects by interacting with a diverse group of receptors. Two of these receptors, the 5-HT1Dβ and the 5-HT1E receptors, are ∼60% identical in the transmembrane domains that presumably form the ligand binding site yet have very different pharmacological properties. Analysis of the pharmacological properties of a series of chimeric 5-HT1Dβ/5-HT1E receptors indicates that sequences in the sixth and seventh transmembrane domains are responsible for the differential affinity of 5-carboxamidotryptamine for these two receptors. More detailed analysis shows that two amino acid differences in the sixth transmembrane domain (Ile333 and Ser334 in the 5-HT1Dβ receptor, corresponding to Lys310 and Glu311 in the 5-HT1E receptor) are largely responsible for the differential affinities of some, but not all, ligands for the 5-HT1Dβ and 5-HT1E receptors. It is likely that these two amino acids subtly determine the overall three-dimensional structure of the receptor rather than interact directly with individual ligands.  相似文献   

18.
19.
The 5-hydroxytryptamine (5-HT4) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT4 receptor [3H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography, and related this to 5-HT transporter ( S )-[ N -methyl-3H]citalopram binding. We also determined the regulation of 5-HT4 receptor binding by 1, 14, and 21 days of paroxetine administration and subchronic 5-HT depletion, and compared this with changes in 5-HT2A receptor [3H]MDL100907 binding. In the Flinders Sensitive Line, the 5-HT4 receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16–47% down-regulation of 5-HT4 receptor binding in all regions evaluated including the basal ganglia and hippocampus, while 5-HT depletion increased the 5-HT4 receptor binding in the dorsal hippocampus, hypothalamus, and lateral globus pallidus. In comparison, the 5-HT2A receptor binding was decreased in the frontal and cingulate cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT4 receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration.  相似文献   

20.
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3H]CP-96,501, was found to bind with a high affinity ( K D, 0.21 n M ) to a single binding site ( n H, 1.0). The receptor density of this site ( B max, 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3H]5-HT. Competition curves of 16 serotonergic compounds in [3H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3H]5-HT or [125I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号