首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An autoradiographic study was made of the 3H-uridine incorporation into RNA and DNA in nucleus and cytoplasm of parenchymal cells in the regenerating liver of the mouse after a pulse time of 2 hr. After a decreased uptake of precursor into the parenchymal nucleus during the first 6 hr compared with the normal value, incorporation increased and was maximal at 36 hr; normal values were restored at 72 hr. The cytoplasmic labelling, after an initial small decrease, reached a maximum at 12 hr; this changed to normal 48 hr after hepatectomy. RNase-digestion of the liver sections left a small incorporation in both nucleus and cytoplasm: presumably DNA. This incorporation is maximal at 12 hr over the nucleus and at 24 hr over the cytoplasm. After a 2 hr pulse of 3H-thymidine, there was a marked uptake of the precursor into DNA about 24 hr after hepatectomy. This was maximal at 48 hr and reached normal values at 72 hr. A small amount of incorporation of 3H-thymidine into DNA was seen immediately after the operation, and this population of weakly labelled nuclei was still rather large 72 hr later.  相似文献   

2.
Cultures of Rhizosolenia formosa H. Peragallo were studied to assess whether or not physiological and optical characteristics of this large diatom were consistent with the ability to migrate vertically in the open ocean. Time-course experiments examined changes in chemical composition and buoyancy of R. formosa during nitrate (N)–replete growth, N starvation, and recovery. Cells could maintain unbalanced growth for at least 53 h after depletion of ambient nitrate. Increases in C:N and carbohydrate: protein ratios observed during N starvation reversed within 24 h of reintroduction of nitrate to culture medium. Buoyancy was related to nutrition: Upon N depletion, the percentage of positively buoyant cells decreased to 4% from 11% but reverted to 9% within 12 h of nitrate readdition. Cells took up nitrate in the dark. Nitrogen-specific uptake rates averaged 0.48 d?1; these rates were higher than N-specific growth rates (0. 15 d?1), indicating the potential for luxury consumption of nitrate, which can be stored for later use. Measurements of photosynthesis vs. irradiance, chlorophyll-specific absorption (aph*(λ)), and pigment composition showed that cells may be adapted for growth under a wide range of irradiances. Values of aph*(λ) were lower for N-depleted cells than for N-replete cells, and N-depleted cells had higher ratios of total carotenoids to chlorophyll a. Aggregation of chloroplasts was more pronounced in N-depleted cells. These are possibly photoprotective mechanisms that would be an advantage to N-depleted cells in surface waters. Compounds that absorb in the ultraviolet region were detected in N-replete cells but were absent in N-depleted cultures. Overall, these results have important implications for migrations of Rhizosolenia in nature. Cells may survive fairly long periods in N-depleted surface waters and will continue to take up carbon; then they can resume nitrate uptake and revert to positive buoyancy upon returning to deep, N-rich water. Uncoupled uptake of carbon and nitrogen during migrations of Rhizosolenia is a form of new production that may result in the net removal of carbon from oceanic surface waters.  相似文献   

3.
Cell‐cycle effects in phytoplankton have both general and specific influences over a variety of cellular processes. Understanding these effects requires that the majority of cells in a culture are progressing through the same cell‐cycle stage, which requires synchronous growth. We report the development of a silicon starvation–recovery synchrony for the first diatom with a sequenced genome, Thalassiosira pseudonana Hasle et Heimdale, which provides several novel insights into the process of cell‐wall formation. After 24 h of silicate starvation, flow cytometry measurements indicated that 80% of the cells were arrested in the early G1 phase of the cell cycle and then upon silicate replenishment progressed synchronously through the cycle. An early G1‐arrest point was not previously documented in diatoms. After silicate replenishment, girdle‐band synthesis was confined to a particular period in G1, and cells did not lengthen in accordance with each girdle band added, which has implications related to cell growth and separation processes in diatoms. Measurements of silicic acid uptake, intracellular pools, and silica incorporation into the cell wall, coupled with fluorescence visualization of newly synthesized cell‐wall structures, provide the first direct measurements of silica amounts in individual girdle bands and valves in a diatom. Fluorescence imaging indicated why valves in T. pseudonana do not have to reduce in size with each generation and enabled visualization of intermediates in structure formation. The development of a synchrony procedure for T. pseudonana enables correlation of cellular events with the cell cycle, which should facilitate the use of genomic information.  相似文献   

4.
5.
The mechanism of action of the alkaloid vincristine (VCR) has been investigated in vitro on HeLa cells in culture and in vivo on jejunal crypt cells of the mouse. The in vitro experiments with HeLa cells show that VCR affects not only mitotic but also interphase cells. The VCR-affected cells first continue their passage through the cell cycle undisturbed but after reaching mitosis they are arrested in metaphase. This agrees well with the results obtained by Madoc-Jones & Mauro (1968) and Madoc-Jones (1973) on synchronized cell cultures. Until now there has been no investigation of the mechanism of action of VCR in vivo. This is due to the absence of a suitable technique for synchronization in vivo. The present study is based on a method which permits the assessment of the VCR sensitivity as a function of the cell age without synchronization in the usual sense. The jejunal crypt epithelium of the normal mouse was double labelled with 3H- and 14C-thymidine (TdR) in such a way as to produce a narrow subpopulation of crypt cells with a maximum age difference of 1 hr. On autoradiographs these cells can be distinguished by their characteristic labelling from other cells. As this ‘pseudo’-synchronized subpopulation passes through the cycle the effect of VCR can be studied, i.e. one can analyse the effect in well-defined time intervals of the cycle. The results show that the effect of VCR is the same in vivo as in vitro. The crypt cells which are affected by VCR in interphase continue their passage through the cycle, but upon entering mitosis they are arrested in metaphase. VCR has, at the concentration used in the present study, no effect on the duration of the S and G2 phases. The necrotic cells seen after VCR application are formed from arrested metaphases.  相似文献   

6.
Colonies of the tube-dwelling diatom Navicula hamulifera Grunow living on mangrove prop roots in Indian River. Florida and at La Parguera, Puerto Rico, were studied using light and electron microscopy. Observations of the tube morphology and cell structure of this diatom from fresh samples and cultures are described, as well as the ultrastructural morphology of its frustule. The formation of tubes by this diatom is reported for the first time. Comparisons are made with the closest species; Navicula delognei V.H. and Navicula pseudocomoides Hendey.  相似文献   

7.
The freshwater diatom Asterionella formosa Haas. was grown in semicontinuous culture at 20°C under continuous cool-white fluorescent light of ca. 20 μEin · m?2· s ·?1 in a medium containing Si: P in various concentration ratios. The cell quotas of P and Si changed in relation to the available concentrations of P and Si at constant μ= 0.11 and 0.16 d?1. Under Si-limitation, the P cell quota increased by over an order of magnitude as the influent [Si:P] decreased. The Si cell quota increased with increase in [Si] in the influent medium, and it increased as [P] increased at a specific [Si]. Under P-limitation, the P cell quotas were fairly constant and low; the Si cell quotas were relatively high and decreased slightly as influent [P] and [Si] increased. Asterionella stored up to 28 times more P and 2 times more Si than needed. The number of Asterionella cells per colony varied as a function of the influent [Si:P] and nutrient limitation being usually less than or equal to 6 when P-limited, and greater than 10 when Si-limited.  相似文献   

8.
Silicic acid transport was studied in the photosynthetic diatom Navicula pelliculosa (Bréb.) Hilse using [68Ge] germanic acid (68Ge(OH)4) as a tracer of silicic acid (Si(OH)4). The initial uptake rate of Si(OH)4 was dependent on cell number, pH, temperature, light and was promoted by certain monovalent cations in the medium. Na+ was more effective than K+, whereas Li+ and NH+4 were ineffective at promoting uptake. Uncouplers and inhibitors of oxidative phosphorylation and of photophosphorylation reduced uptake by 40–99% of control values. Uptake was also especially sensitive to the sulfhydryl blocking agents at 10?5 M and to the ionophorous compound valinomycin (10?7 M) which inhibited uptake by 82%. The Si(OH)4 transport system displayed Michaelis-Menten-type saturation kinetics with kinetic parameters of KS= 4.4 p. mol Si(OH)4· 1?1, Vmax= 334 pmol Si(OH)4· 106 cells?1· min?1. Calculations of the acid soluble silicic acid pool size based on 60 s uptake at 20 μM Si(OH)4 suggested that intracellular levels of Si could reach 20 mM and as much as 5 mM could exist as free silicic acid, representing maintenance of a 250-fold concentration gradient compared with the medium. Efflux from preloaded cells was dependent on temperature and the Si(OH)4 concentration of the external medium. In the presence of 100 μMM “cold” Si(OH)4, approximately 30% of the Si(OH)4 in preloaded cells was exchanged in 20 min. The initial uptake rate of Si(OH)4 in logarithmic phase cells was constant, but the uptake rate increased in a linear fashion for 6 h in stationary phase cells. These results suggest that the first step in silica mineralization by diatoms is the active transmembrane transport of Si(OH)4 by an energy dependent, saturable, membrane-carrier mechanism which requires the monovalent cations Na+ and K+ and is sensitive to sulfhydryl blocking agents. Silicic acid transport activity also appears to be regulated during different growth stages of the diatom.  相似文献   

9.
The diatom Eunotia pectinalis (O. F. Müll.?) Rabh. exhibited considerable morphological variability in samples collected over a 13-month period from a softwater Rhode Island stream. All observed morphotypes were classified into three main complexes based upon their valve configuration. These groupings were confirmed by discriminant analysis using quantitative valve characteristics and were named in accordance with their associated varieties: minor (Kütz.) Rabh., pectinalis and ventricosa Grun. Clonal cultures were subjected to a defined series of temperatures, agitation rates and light intensities in order to assess inherent morphological variability. Similar trends were evident for all complexes. Over time, valve length decreased, valve breadth enlarged, and striae number per 10 μm at valve center and apex increased. Morphological plasticity was evident in culture and appeared to be more a function of the clone genotype than the environmental conditions to which it was subjected. One clone originally identified as E. pectinalis var. minor assumed certain morphological features of E. vanheurckii Patr. after four months in culture.  相似文献   

10.
11.
Toxicity levels and profiles of three isolates of Gonyaulax tamarensis Lebour grown under the same conditions were compared. One isolate was collected from Ipswich, Massachusetts, during the massive red tide of 1972 along the New England coast. The other two isolates were obtained from Perch Pond (Falmouth, Massachusetts) and Mill Pond (Orleans, Massachusetts) located in the southwest and south of Cape Cod, Massachusetts, respectively. All the three cultures produced toxins with variation in their toxicity levels. Toxin contents were highest in the Ipswich isolate, followed in an order by Mill Pond and Perch Pond cultures. Morphological similarity existed between Ipswich and Mill Pond cells, whereas the Perch Pond cells possessed an additional ventral pore on the l' epithecal plate.  相似文献   

12.
—A method has been developed for the measurement of metabolically evolved 14CO2 which reduces contamination, utilizes conventional scintillation counting equipment, and makes possible direct comparisons with liquid samples without the need for large correction factors. The application of the method reveals that cysteine is transported into squid axons where much of it is decarboxylated, but where very little of the remainder of the molecule is metabolized to CO2. In contrast, pyruvate is taken up much more slowly, probably by diffusion, but is almost entirely metabolized to CO2. Thus cysteine does not appear to be appreciably metabolized by squid nerve via a ‘pyruvate pathway’. Although only a little appears to be metabolized via a ‘taurine pathway’, that small portion goes mainly to hypotaurine, and none goes beyond to isethionate.  相似文献   

13.
14.
Interactions between saprotrophic and ectomycorrhizal fungi have been largely ignored, although their mycelia often share the same microsites. The mycelial systems show general similarity to each other and, although the enzymatic potential of the saprotrophic fungi is generally considered to be higher, the importance of organic nutrient sources to ectomycorrhizal fungi is now widely accepted. In the experiments described here, nutritional interactions involving transfer of elements from one mycelium to the other have been monitored dynamically using radioactive tracers and a non-destructive electronic autoradiography system. Microcosms were used in which mycelial systems of the ectomycorrhizal fungi Suillus variegatus and Paxillus involutus , extending from Pinus sylvestris host plants, were confronted with mycelia of the saprotroph Hypholoma fasciculare extending from wood blocks. The fungi showed a clear morphological confrontation response. The mycorrhizal mycelium often formed dense patches over the Hypholoma mycelia. Up to 25% of the 32P present in the Hypholoma mycelium was captured by the mycorrhizal fungi and translocated to the plant host within 30 d. The transfer of 32P to the saprotroph from labelled mycorrhizal mycelium was one to two orders of magnitude lower. The significance of this transfer as a 'short cut' in nutrient cycling is discussed.  相似文献   

15.
The claim that Chlorella sp. (CCAP 211/8p), sometimes referred to as C. fusca, Shihira and Krauss, does not excrete glycolate has been reexamined. Chlorella sp. grown on 5% CO2in air, excreted glycolate when incubated in light in 10 mM bicarbonate. Excretion ceased 30–60 min after transfer of the cells to air and no excretion could be detected with air-grown cells or with cells grown on 5% CO2in media buffered at pH 8.0. Incubation with 10 mM isonicotinyl hydrazide, a glycolate pathway inhibitor, caused excretion in air-grown cells and stimulated excretion in CO2-grown cells indicating that both the rate of glycolate synthesis and metabolism is higher in CO2grown cells than in air-grown cells. Enhanced glycolate synthesis and excretion in CO2-grown cells is correlated with law photosynthetic rate in 10 mM bicarbonate, and the photosynthetic rate of these cells doubles over a period of 2–2.5 h after initial transfer from high CO2to bicarbonate. This correlation of photosynthetic induction with cessation of glycolate excretion is similar to that reported in a bluegreen alga and thought to occur in other green algae. These results indicate that glycolate excretion and its regulation in this species of Chlorella is not different from that in other algae.  相似文献   

16.
The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light‐ (E), nitrogen‐ (N), and phosphorus‐ (P) limited growth rates. In all growth conditions investigated, the decrease in the growth rate was linked with a higher relative contribution of the G2+M phase. The other phases of the cell cycle, G1 and S, showed different patterns, depending on the type of limitation. All experiments showed a highly significant increase in the amount of biogenic silica per cell and per cell surface with decreasing growth rates. At low growth rates, the G2+M elongation allowed an increase of the silicification of the cells. This pattern could be explained by the major uptake of silicon during the G2+M phase and by the independence of this process on the requirements of the other elements. This was illustrated by the elemental ratios Si/C and Si/N that increased from 2‐ to 6‐fold, depending of the type of limitation, whereas the C/N ratio decreased by 10% (E limitation) or increased by 50% (P limitation). The variations of the ratios clearly demonstrate the uncoupling of the Si metabolism compared with the C and N metabolisms. This uncoupling enabled us to explain that in any of the growth condition investigated, the silicification of the cells increased at low growth rates, whereas carbon and nitrogen cellular content are differently regulated, depending of the growth conditions.  相似文献   

17.
Cell division patterns in Thalassiosira fluviatilis grown in a cyclostat were analyzed as a function of temperature, photoperiod, nutrient limitation and average cell size of the population. Typical cell division patterns in populations doubling more than once per day had multiple peaks in division rate each day, with the lowest rates always being greater than zero. Division bursts occurred in both light and dark periods with relative intensities depending on growth conditions. Multiple peaks in division rate were also found, when population growth rates were reduced to less than one doubling per day by lowering temperature, nutrients, or photoperiod and the degree of division phasing was not enhanced. Temperature and nutrient limitation shifted the timing of the major division burst relative to the light/dark cycle. Average cell volume of the inoculum was found to be a significant determinant of the average population growth rate and the timing and magnitude of the peaks in division rate. The results are interpreted in the context of a cell cycle model in which generation times are “quantized” into values separated by a constant time interval.  相似文献   

18.
Abstract— By using a combination of subcutaneous and intraventricular injections of [14C]uridine and [3H]methyl- l -methionine we have obtained maximum incorporation in about 40 min of both radioactive precursors into nuclear RNA from rat brain. In this nuclear fraction we found at least two different types of RNA that were rapidly labelled. One of them incorporated both [14C]uridine and [3H]methyl groups and seemed to correspond to species of rRNA and their precursors. The other RNA fraction was less methylated or non-methylated and exhibited sedimentation coefficients distributed along a continuous 8–30 % sucrose density gradient. At least part of the latter type of RNA very probably was mRNA, but much of it must conespond to a different RNA similar to that recently described in HeLa cells by P enman , V esco and P enman (1968).
We also found that labelled 185 and 285 rRNA components began leaving the nucleus for the cytoplasm within 24 to 33 min after the radioactive precursors had been injected, and, in the cytoplasmic fraction, the patterns of incorporation for [14C]uridine and [3H]-methyl groups were similar for the 18S and 28S rRNA components. We estimate that in this fraction of rat brain the 18S rRNA component was 1·4 times more methylated than the 28S component. We also detected a lower sedimentation coefficient for the non- or slightly methylated, species of soluble RNA found in the cytoplasmic fraction.  相似文献   

19.
Lipids comprising the stenols, stanols, polar lipid fatty acids, alkanes and alkenes of blue-green algal-(diatomaceous)-microbial mats and cores (modern cold water stromatolites) collected from three Antarctic lakes were identified and compared with those of other algae. The major stenols were: (cholesta-5, 22-dien-3β-ol, cholest-5-en-3β-ol, 24-methylcholesta-5, 22-dien-3β-ol, 24-methyl-cholest-5-en-3β-ol, 24-ethylcholesta-5, 22-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol). The presence of C28 Δ3, 22 stenols, as well as other C28 stenols, was suggestive of diatom input. C29 stenols may have originated from blue-grern algae. However, the high concentrations of stenols present and the lack of Δ7 stenols was atypical for known stenol components of several blue-green algal species previously reported. The occurrence of these stenols and other lipid markers strongls implicate diatoms as well as blue-green algae as important biogenetic sources of lipids and has established the potential for studies of lipid diagenesis in these unique cold, freshwater stromatolites .  相似文献   

20.
The mechanism of photosynthetic carbon dioxide fixation in the green flagellate Dunaliella tertiolecta Butcher varies during growth in batch culture. Evidence for this change comes from three sources: i) algae from the stationary phase incorporated a greater proportion of the fixed carbon into amino arids and protein than did cells from the mid-exponential phase; ii) the activity of phosphoenolpyruvate carboxylase relative to that of ribulose-1, 5-di-phosphate carboxylase increased with age in batch culture; and, iii) cells from the stationary phase appeared to utilize the bicarbonate ion as the substrate for photosynthesis, whereas those from mid-exponential phase appeared to utilize fire carbon dioxide. These data suggest that a change of photosynthetic mechanism can occur within a single species of alga, depending on its physiological state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号