首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peatlands represent globally-important ecosystems and carbon stores. However, large areas of peatland have been drained for agriculture, or peat has been harvested for use as fuel or in horticulture. Increasingly, these landscapes are being restored through ditch blocking and rewetting primarily to improve biodiversity and promote peat accumulation. To date we have little knowledge of how these interventions influence the microbial communities in peatlands. We compared the responses of dominant microbial consumers (testate amoebae) to drainage ditch restoration relative to unblocked ditches in a UK upland blanket peatland (Migneint, North Wales). Two techniques were used for restoration: (i) dammed ditches with re-profiling; and (ii) dammed ditches with pools of open water behind each dam. Testate communities in the inter-ditch areas changed markedly over time and between treatments illustrating the potential of this group of organisms as indicators of blanket peatland restoration status. However, the responses of testate amoebae to peat rewetting associated with restoration were partially obscured by inter-annual variability in weather conditions through the course of the experiment. Although there was considerable variability in the response of testate amoebae communities to peatland drain blocking, there were clearly more pronounced changes in samples from the dammed and reprofiled treatments including an increase in diversity, and the appearance of unambiguous wet-indicator species in relatively high abundances (including Amphitrema stenostoma, Archerella flavum, Arcella discoides type, Difflugia bacillifera and Difflugia bacillarium). This reflects a shift towards overall wetter conditions across the site and the creation of new habitats. However, water-table was not a significant control on testate amoebae in this case, suggesting a poor relationship between water table and surface moisture in this sloping blanket peatland. Our findings highlight the potential of testate amoebae as bioindicators of peatland restoration success; however, there is a need for caution as mechanisms driving change in the microbial communities may be more complex than first assumed. Several factors need to be taken into account when implementing biomonitoring studies in peatlands including: (i) the natural variability of the peatland ecosystem under changing weather conditions; (ii) any disturbance connected with the restoration procedures; and (iii) the timescales over which the ecosystem responds to the management intervention. Our results also suggest an indicator species approach based on population dynamics may be more appropriate for biomonitoring peatland restoration than examining changes at the community level.  相似文献   

2.
Peatlands in Australia and New Zealand are composed mainly of Restionaceous and Cyperaceous peats, although Sphagnum peat is common in wetter climates (Mean Annual Precipitation > 1,000 mm) and at higher altitudes (>1,000 m). Experimental trials in two contrasting peatland types—fire‐damaged Sphagnum peatlands in the Australian Alps and cutover restiad bogs in lowland New Zealand—revealed similar approaches to peatland restoration. Hydrological restoration and rehydration of drying peats involved blocking drainage ditches to raise water tables or, additionally in burnt Sphagnum peatlands, peat‐trenching, and the use of sterilized straw bales to form semipermanent “dam walls” and barriers to spread and slow surface water movement. Recovery to the predisturbance vegetation community was most successful once protective microclimates had been established, either artificially or naturally. Specifically, horizontally laid shadecloth resulted in Sphagnum cristatum regeneration rates and biomass production 3–4 times that of unshaded vegetation (Australia), and early successional nurse shrubs facilitated establishment of Sporadanthus ferrugineus (New Zealand) within 2–3 years. On severely burnt or cutover sites, a patch dynamic approach using transplants of Sphagnum or creation of restiad peat “islands” markedly improved vegetation recovery. In New Zealand, this approach has been scaled up to whole mine‐site restoration, in which the newly vegetated islands provide habitat and seed sources for plants and invertebrates to spread onto surrounding areas. Although a vegetation cover can be established relatively rapidly in both peatland types, restoration of invertebrate communities, ecosystem processes, and peat hydrological function and accumulation may take many decades.  相似文献   

3.
Knowledge on soil microbial respiration (SMR) rates and thus soil-related CO2 losses from Arctic soils is vital because of the crucial importance of this ecosystem within the global carbon (C) cycle and climate system. Here, we measured SMR from various habitats during the growing season in Russian subarctic tundra by applying two different approaches: 14C partitioning approach and root trenching. The variable habitats encompassed peat and mineral soils, bare and vegetated surfaces and included both dry and moist ones. The field experiment was complemented by laboratory studies to measure bioavailability of soil carbon and identify sources of CO2. Differences in bioavailability of soils, measured in the laboratory as basal soil respiration rates, were generally greater than inter-site differences in SMR rates measured in situ, suggesting secondary constraints at field conditions, such as soil C content. There was a tendency towards lower SMR in vegetated peat plateaus compared to upland mineral tundra (on average 137 vs. 185 g CO2 m?2 growing season?1, respectively), but no significant differences were found. Surprisingly, the bare surfaces (peat circles) with 3500-year-old C at the surface exhibited about the largest SMR among all sites as shown by both methods. This was related to the general development of peat plateaus in the region, and uplifting of deeper peat with high C content to the surface during the genesis of peat circles. This observation is particularly relevant for decomposition of deeper peat in vegetated peat plateaus, where soil material similar to the bare surfaces can be found. The data indicate that the large stocks of C stored in permafrost peatlands are principally available for decomposition despite old age.  相似文献   

4.
In North America, mulching of vacuum-harvested sites combined with blocking of the drainage system is widely used for peatland restoration to accelerate Sphagnum establishment. However, peat extraction in fen peatlands or exposure of deeper minerotrophic peat layers results in soil chemistry that is less suitable for re-establishment of Sphagnum moss. In this situation, restoration of plant species characteristic of minerotrophic peatlands is desirable to return the site to a carbon accumulating system. In these cases, it may be worthwhile to maintain spontaneously revegetating species as part of restoration if they provide desirable ecosystem functions. We studied the role of six spontaneously recolonizing vegetation communities for methane (CH4) emissions and pore water CH4 concentration for two growing seasons (2008 and 2009) at an abandoned minerotrophic peatland in southeastern Quebec. We then compared the results with bare peat and adjacent natural fen vegetation. Communities dominated by Eriophorum vaginatum, Carex aquatilis and Typha latifolia had CH4 flux an order of magnitude greater than other cutover vegetation types and natural sites. In contrast, Scirpus atrocinctus and Equisetum arvense had CH4 emission rates lower than natural hollow vegetation. We found seasonal average water table and vegetation volume had significant correlation with CH4 flux. Water table and soil temperature were significantly correlated with CH4 flux at plots where the water table was near or above the surface. Pore water CH4 concentration suggests that CH4 is being produced at the cutover peatland and that low measured fluxes likely result from substantial oxidation of CH4 in the unsaturated zone. Understanding ecosystem functions of spontaneously recolonizing species on cutover fens can be used to help make decisions about the inclusion of these communities for future restoration measures.  相似文献   

5.
Abstract Using a 50-year-old field experiment, we investigated the effects of the long-term land management practices of repeated burning and grazing on peatland vegetation and carbon dynamics (C). Plant community composition, C stocks in soils and vegetation, and C fluxes of CO2, CH4 and DOC, were measured over an 18-month period. We found that both burning and grazing reduced aboveground C stocks, and that burning reduced C stocks in the surface peat. Both burning and grazing strongly affected vegetation community composition, causing an increase in graminoids and a decrease in ericoid subshrubs and bryophytes relative to unburned and ungrazed controls; this effect was especially pronounced in burned treatments. Soil microbial properties were unaffected by grazing and showed minor responses to burning, in that the C:N ratio of the microbial biomass increased in burned relative to unburned treatments. Increases in the gross ecosystem CO2 fluxes of respiration and photosynthesis were observed in burned and grazed treatments relative to controls. Here, the greatest effects were seen in the burning treatment, where the mean increase in gross fluxes over the experimental period was greater than 40%. Increases in gross CO2 fluxes were greatest during the summer months, suggesting an interactive effect of land use and climate on ecosystem C cycling. Collectively, our results indicate that long-term management of peatland has marked effects on ecosystem C dynamics and CO2 flux, which are primarily related to changes in vegetation community structure.  相似文献   

6.

Aims

Plant growth forms can influence carbon cycling, particularly in carbon-rich ecosystems like northern peatlands; however, mechanistic evidence of this relationship is limited. Our aim was to determine if northern peatland plant growth forms alter belowground dissolved carbon chemistry and enhance carbon release through stimulated microbial metabolism.

Methods

We used replicated, peat monoliths populated exclusively by Sphagnum mosses, graminoids, or bare peat and quantified changes in belowground dissolved organic carbon chemistry, microbial metabolism, as well as respired CO2.

Results

The graminoid growth form was significantly distinct in belowground dissolved organic carbon chemistry with carbon compound lability 20 % and 11 % greater than bare peat and Sphagnum moss respectively. The labile dissolved organic carbon stimulated the microbial community, as indicated by greater microbial metabolic activity and richness values in conjunction with 50 % higher respired CO2 fluxes under the graminoid treatment.

Conclusions

Our results provide mechanistic evidence that peatland plant growth forms can drive carbon cycling processes by altering dissolved organic carbon chemistry to prompt cascading effects on the microbial community and carbon release — trends suggestive of microbial priming effects. Should climate change increase graminoid prevalence at the expense of Sphagnum moss northern peatland carbon store stability may be threatened by this mechanism.
  相似文献   

7.
The Gahai Lake wetland natural conservation area in northwestern China includes peatland that has been accumulating over hundreds of years and is seldom disturbed by industry. Bacteria and archaea in peat soil, which is a reservoir for carbon and water, may influence its ecological function. The objective of this study was to obtain a clearer understanding of peat microbial ecology and its relationship to the environmental conditions of this area. Hence, the microbial community of the peatland ecosystem was investigated by sequencing bacterial and archaeal DNA extracted from samples collected at different peat depths. Results showed that in all samples the dominant bacterial phyla were Proteobacteria (relative abundance 0.39 ± 0.12) and Chloroflexi (0.16 ± 0.09), while the dominant archaeal phyla were Miscellaneous Crenarchaeotic Group (MCG) (0.62 ± 0.21) and Euryarchaeota (0.27 ± 0.16). The diversity and microbial community structure at deeper depths (90 and 120 cm below the peat surface) significantly differ from that at shallower depths (10, 30 and 50 cm deep). In contrast to the shallow layers, the deeper layers became more abundant in the bacterial phyla Chloroflexi, Bacteroidetes, Atribacteria, Aminicenantes, Chlorobi, TA06, Caldiserica and Spirochaetae; and in the archaeal phyla MCG and Miscellaneous Euryarchaeotic Group (MEG). This study revealed a significant shift in microbial community in peat between 50 cm and 90 cm deep, as probably influenced by the oxygen supply at different depths. Furthermore, new insights into the microbial taxa were obtained, thus providing a baseline for future studies of this peat ecosystem.  相似文献   

8.
Extensive drainage of peatlands in north-west Europe for the purposes of afforestation for timber production and harvesting has altered the carbon balance and biodiversity value. Large-scale restoration projects aim to reinstate hydrological conditions to keep carbon locked up in the peat and to restart active peat growth. Testate amoebae are an informal grouping of well-studied protists in peatland environments and as microbial consumers play an important role in nutrient and carbon cycling. Using a space for time substitution approach, this study investigated the response of testate amoebae assemblages and vegetation composition after tree removal on a drained raised bog. There was a clear difference in microbial assemblages between open and a chronosequence of restoration areas. Results suggest microbial recovery after rewetting is a slow process with plant composition showing a faster response than the microbial assemblage. Mixotrophic testate amoebae had not recovered seventeen years following plantation removal and the establishment of Sphagnum mosses in the wetter microforms. These results suggest that vegetation composition and Testate amoeba assemblages respond differently to environmental drivers at forest-to-bog restoration areas. Local physicochemical peat properties were a stronger driver of the testate assemblage compared with vegetation. Complete recovery of microbial assemblages may take place over decadal timescales.  相似文献   

9.
Boreal peat-forming wetlands, mires, are globally important sources of methane and sinks for CO2. As peatland vegetation plays a significant role regulating the exchange of these greenhouse gases, we have assessed the responses of the dominant plants and ecosystem functions to increasing tropospheric ozone concentration and enhanced ultraviolet-B (UV-B) radiation in long-term experiments, the results of which are summarized in this review. The dominant sedge, Eriophorum vaginatum, and especially the Sphagnum mosses common on peatlands, appear fairly tolerant to the future predicted ozone levels. Similarly, UV-B radiation only caused few alterations in the carbohydrates and pigments of the dominant sedge, Eriophorum russeolum, and had no effects on the dominant moss species of the experimental site, Warnstorfia exannulata. Surprisingly, there were alterations in organic acid concentrations in the peat pore water and peat microbial community composition in both experiments. Elevated ozone caused a transient decrease in ecosystem-level gross photosynthesis and methane (CH4) emission, which shifted to a slight increase later on. Enhanced UV-B decreased dark ecosystem respiration and increased CH4 emission in the course of the six measurement years. The emission of isoprene was increased by both ozone and UV-B during warm weather periods, suggesting interactive effects with temperature. All in all, we suggest that ozone and UV-B have limited effects on the carbon cycle in boreal peatlands, because other environmental factors, such as temperature, water level and photosynthetically active radiation more strongly regulate CO2 and CH4 exchange rates.  相似文献   

10.
Many peatlands have a recent history of being degraded by extraction, drainage, burning, overgrazing and atmospheric pollution often leading to erosion and loss of peat mass. Restoration schemes have been implemented aimed at rewetting peatlands, encouraging revegetation of bare peat or shifting the present vegetation assemblage to an alternative. Here we demonstrate the use of palaeoecological techniques that allow reconstruction of the historical development of a blanket peatland and provide a historical context from which legitimate restoration targets can be determined and supported. We demonstrate the applicability of simple stratigraphic techniques to provide a catchment-wide peatland development history and reinforce this with a detailed macrofossil reconstruction from a central core. Analysis at Keighley Moor Reservoir Catchment in northern England showed that the present vegetation state was ‘atypical’ and has been characteristic for only the last c. 100 years. Sphagnum moss was an important historic contributor to the vegetation cover between 1500 years ago and the early 1900s. Until the early 1900s Sphagnum occurrence fluctuated with evidence of fire, routinely returning after fire demonstrating good resilience of the ecosystem. However, from the turn of the 20th century, Sphagnum levels declined severely, coincident initially with a wildfire event but remaining extremely diminished as the site regularly underwent managed burning to support grouse moor gun sports where practitioners prefer a dominant cover of heather. It is suggested that any intention to alter land management at the site to raise water tables and encourage greater Sphagnum abundance is in line with peatland development at the site over the past 1500 years. Similar palaeoecological studies providing historical context could provide support for restoration targets and changes to peatland management practice for sites globally.  相似文献   

11.
极端干旱区增雨加速泡泡刺群落土壤碳排放   总被引:2,自引:0,他引:2  
刘殿君  吴波  李永华  朱雅娟  卢琦 《生态学报》2012,32(17):5396-5404
以极端干旱区(敦煌)泡泡刺群落为研究对象,采用动态气室法(Li-8100,USA)于2010年5月至9月测定分析了生长季内增雨对泡泡刺群落土壤碳排放量的影响。结果表明:裸地和灌丛在09:00—11:00的碳排放量与全天碳排放量具有线性正相关关系(裸地R2=0.31—0.76,P<0.001;灌丛R2=0.85—0.96,P<0.001)。增雨50%(4 mm)—300%(24 mm)能够加速裸地和灌丛土壤的碳排放,每增雨1 mm,裸地和灌丛土壤的碳排放分别增加0.27和1.12 g/m2。当泡泡刺群落盖度一定时,与对照相比,每增加1 mm降雨,泡泡刺群落土壤碳排放量增加0.69 g/m2。在未来中国西北干旱地区降雨增加背景下,这一研究数据将为进一步估算该区域群落或生态系统碳收支提供可靠的参考数据。  相似文献   

12.
In European peatlands which have been drained and cut-over in the past, re-vegetation often stagnates after the return of a species-poor Sphagnum community. Re-introduction of currently absent species may be a useful tool to restore a typical, and more diverse, Sphagnum vegetation and may ultimately improve the functioning of peatland ecosystems, regarding atmospheric carbon sequestration. Yet, the factors controlling the success of re-introduction are unclear. In Ireland and Estonia, we transplanted small and large aggregates of three Sphagnum species into existing vegetation. We recorded changes in cover over a 3-year period, at two water levels (?5 and ?20 cm).Performance of transplanted aggregates of Sphagnum was highly species specific. Hummock species profited at low water tables, whereas hollow species profited at high water tables. But our results indicate that performance and establishment of species was also promoted by increased aggregate size. This mechanism (positive self-association) has earlier been seen in other ecosystems, but our results are the first to show this mechanism in peatlands. Our results do not agree with present management, which is aimed at retaining water on the surface of peat remnants in order to restore a functional and diverse Sphagnum community. More than the water table, aggregate size of the reintroduced species is crucial for species performance, and ultimately for successful peatland restoration.  相似文献   

13.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

14.
A primary tropical peat swamp forest is a unique ecosystem characterized by long-term accumulation of plant biomass under high humidity and acidic water-logged conditions, and is regarded as an important terrestrial carbon sink in the biosphere. In this study, the microbial community in the surface peat layer in Pru Toh Daeng, a primary tropical peat swamp forest, was studied for its phylogenetic diversity and metabolic potential using direct shotgun pyrosequencing of environmental DNA, together with analysis of 16S rRNA gene library and key metabolic genes. The community was dominated by aerobic microbes together with a significant number of facultative and anaerobic microbial taxa. Acidobacteria and diverse Proteobacteria (mainly Alphaproteobacteria) constituted the major phylogenetic groups, with minor representation of archaea and eukaryotic microbes. Based on comparative pyrosequencing dataset analysis, the microbial community showed high metabolic versatility of plant polysaccharide decomposition. A variety of glycosyl hydrolases targeting lignocellulosic and starch-based polysaccharides from diverse bacterial phyla were annotated, originating mostly from Proteobacteria, and Acidobacteria together with Firmicutes, Bacteroidetes, Chlamydiae/Verrucomicrobia, and Actinobacteria, suggesting the key role of these microbes in plant biomass degradation. Pyrosequencing dataset annotation and direct mcrA gene analysis indicated the presence of methanogenic archaea clustering in the order Methanomicrobiales, suggesting the potential on partial carbon flux from biomass degradation through methanogenesis. The insights on the peat swamp microbial assemblage thus provide a valuable approach for further study on biogeochemical processes in this unique ecosystem.  相似文献   

15.
Restoration of mined Restionaceae-dominated peat bogs in northern New Zealand is currently initiated by establishing native vegetation cover to minimise erosion of the remaining peat. The relative effects of various restoration techniques on litter decomposition and microbial activity within experimental litter bags were investigated in a restoration trial established on a mined peat surface. Decomposition and microbial activity of litter were compared between four different restoration treatments: direct transfer of intact habitat ‘islands’; the addition of processed peat with seed; the addition of processed peat with no seed; and recently mined peat surface (a ‘do nothing’ restoration option), with the four treatments replicated at each of five distances from an undisturbed peat bog. Treatments were compared with an undisturbed peat bog (control). Litter decomposition and associated microbial respiration rates were significantly higher in the undisturbed peat bog sites than in any of the restoration treatments, but the technique used to restore mined peatlands did have a significant effect on these ecosystem process rates. Results suggest that ecosystem processes such as decomposition and microbial community activity recover faster with restoration techniques such as direct transfer of intact habitat islands, than with other techniques such as simple seed addition. However, even after 12 months, litter decomposition and microbial activity in restored habitats were still far from reaching the levels recorded in the undisturbed peat bog. In addition, there was a strong relationship between the effort (and cost) applied to plant community restoration treatments and the rate of decomposition and microbial community activity.  相似文献   

16.
North American approach to the restoration of Sphagnum dominated peatlands   总被引:4,自引:2,他引:2  
Sphagnum dominated peatlands do not rehabilitate well after being cutover (mined) for peat and some action needs to be taken in order to restore these sites within a human generation. Peatland restoration is recent and has seen significant advances in the 1990s. A new approach addressing the North American context has been developed and is presentedin this paper. The short-term goal of this approach is to establish a plant cover composed of peat bog species and to restore a water regime characteristic of peatland ecosystems. The long-term objective is to return the cutover areas to functional peat accumulating ecosystems. The approach developed for peatland restoration in North America involves the following steps: 1)field preparation, 2) diaspore collection, 3) diaspore introduction, 4) diaspore protection, and 5) fertilization. Field preparation aims at providing suitable hydrological conditions for diaspores through creation of microtopography and water retention basins, re-shaping cutover fields and blocking ditches. It is site specific because it depends largely onlocal conditions. The second step is the collection of the top 10 centimetres of the living vegetation in a natural bog as a source of diaspores. It is recommended to use a ratio of surface collected to surface restored between 1: 10 and 1: 15 in order to minimize the impact on natural bogs and to insure rapid plant establishment in less than four years. Diaspores are then spread as a thin layer on the bare peat surfaces to be restored. It has been demonstrated that too scant or too thick a layer decreases plant establishment success. Diaspores are then covered by a straw mulch applied at a rate of 3 000 kg ha-1 which provides improved water availabilityand temperature conditions. Finally, phosphorus fertilization favours more rapid substrate colonization by vascular plants, which have been shown to help stabilize the bare peat surface and act as nurse plants to the Sphagnum mosses.  相似文献   

17.
Recent advances in peatland restoration techniques have succeeded in establishing Sphagnum moss on the remnant cutover peat surface following peat extraction; however, evaluating restoration success remains a key issue. We argue that a Sphagnum-dominated peatland can only be considered functionally ‘restored’ once organic matter accumulation has achieved a thickness where the mean water table position in a drought year does not extend into the underlying formerly cutover peat surface. Here we monitor the spatio-temporal development of organic matter accumulation in a new peat layer for the first 8 years following the restoration of a Québec peatland and couple a simple acrotelm carbon accumulation model and ecohydrological model to assess peatland restoration success.We determined that organic matter accumulation increased from 2.3 ± 1.7 cm 4 years post-restoration to 13.6 ± 6.5 cm 8 years post-restoration. For comparison, at an adjacent non-restored section of the peatland organic matter accumulation was significantly lower (p < 0.001 for all years), with mean thicknesses of 0.2 ± 0.6 and 0.8 ± 1.2 cm for 24 and 28 years post-extraction, respectively. Given the mean summer water deficit at the site (?64 mm), our ecohydrological modeling results suggest that a 19-cm-thick moss layer would be required to offset the water table decrease induced by the summer water deficit. Given the current rate of organic matter accumulation, net primary productivity and the new peat layer decomposition rates determined using litter bags, we estimate it will take 17 years post-restoration to accumulate a 19-cm moss layer. Consequently, we argue that successful peatland restoration may be achieved in the medium-term and that our simple modeling approach can be useful in assessing the long-term impact of restoration on atmospheric carbon dioxide sequestration.  相似文献   

18.
The long-term (18 years) effects of re-vegetating eroded soil on soil microbial biomass, community structure and diversity were investigated in a forest soil derived from Quaternary clay in the Red Soil Ecological Experimental Station of the Chinese Academy of Sciences. Large areas of land in this region of China have been subjected to severe soil erosion, characterised by the removal of the fertile surface soil and even the exposure of parental rock in some areas due to a combination of deforestation and heavy rainfall. The effects of planting eroded or uneroded soil with Pinus massoniana, Cinnamomum camphora or Lespedeza bicolor on the soil microbial community and chemical properties were assessed. Total soil microbial community DNA was extracted and bacterial 16 S rRNA gene fragments were amplified by PCR and analysed by terminal restriction fragment length polymorphism (T-RFLP). Microbial biomass carbon (Cmic) was measured by chloroform fumigation-extraction. Following the restoration there were significant increases in both Cmic and bacterial diversity (Shannon index), and significant changes in bacterial community structure. Erosion factors were significant only in minor dimensions suggesting that the restoration had been largely successful in terms of bacterial community structure. Compared with uneroded soil, Cmic recovered in L. bicolor and P. massoniana restored eroded plots and was significantly greater under these tree species than C. camphora, although soils in C. camphora restored plots displayed the highest bacterial diversity. The recovery of microbial biomass and diversity in the eroded plots was, to large extent, accompanied by the development of the same bacterial community structure as in the uneroded plots with erosion having relatively little effect on bacterial community structure.  相似文献   

19.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.  相似文献   

20.
This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号