首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.  相似文献   

2.
Aggressive cancer cells and pluripotent stem cells converge in their capacity for self-renewal, proliferation and plasticity. Recent studies have capitalized on these similarities by demonstrating that tumors arise from specific cancer stem cell populations that, in a manner reminiscent of normal stem cells, are able to both self-renew and give rise to a heterogeneous tumor population. This stem cell like function of aggressive cancer cells is likely attributable to the ectopic expression of embryonic factors such as Nodal and Cancer Testis Specific Antigens (CTAs), which maintain a functional plasticity by promoting pluripotency and immortality. During development, the expression of these embryonic factors is tightly regulated by a dynamic array of mediators, including the spatial and temporal expression of inhibitors such as Lefty, and the epigenetic modulation of the genome. In aggressive cancer cells, particularly melanoma, this balance of regulatory mediators is disrupted, leading to the aberrant expression of pluripotency-associated genes. By exposing aggressive cancer cells to embryonic microenvironments, this balance of regulatory mediators is restored, thereby reprogramming tumor cells to a more benign phenotype. These stem cell-derived mediators, as well as the genes they regulate, provide therapeutic targets designed to specifically differentiate and eradicate aggressive cancers.  相似文献   

3.
Glioblastoma is the most aggressive tumor in the CNS and is characterized by having a cancer stem cell (CSC) subpopulation essential for tumor survival. The purinergic system plays an important role in glioma growth, since adenosine triphosphate (ATP) can induce proliferation of glioma cells, and alteration in extracellular ATP degradation by the use of exogenous nucleotidases dramatically alters the size of gliomas in rats. The aim of this work was to characterize the effect of the purinergic system on glioma CSCs. Human U87 glioma cultures presented tumor spheres that express the markers of glioma cancer stem cells CD133, Oct-4, and Nanog. Messenger RNA of several purinergic receptors were differently expressed in spheres when compared to a cell monolayer not containing spheres. Treatment of human gliomas U87 or U343 as well as rat C6 gliomas with 100 μM of ATP reduced the number of tumor spheres when grown in neural stem cell medium supplemented with epidermal growth factor and basic fibroblast growth factor. Moreover, ATP caused a decline in the number of spheres observed in culture in a dose-dependent manner. ATP also reduces the expression of Nanog, as determined by flow cytometry, as well as CD133 and Oct-4, as analyzed by flow cytometry and RT-PCR in U87 cells. The differential expression of purinergic receptor in tumor spheres when compared to adherent cells and the effect of ATP in reducing tumor spheres suggest that the purinergic system affects CSC biology and that ATP may be a potential agonist for differentiation therapy.  相似文献   

4.
Pan J  Zhang Q  Wang Y  You M 《PloS one》2010,5(10):e13298
Cancer stem cells (CSCs) are a small subset of cancer cells capable of self-renewal and tumor maintenance. Eradicating cancer stem cells, the root of tumor origin and recurrence, has emerged as one promising approach to improve lung cancer survival. Cancer stem cells are reported to reside in the side population (SP) of cultured lung cancer cells. We report here the coexistence of a distinct population of non-SP (NSP) cells that have equivalent self-renewal capacity compared to SP cells in a lung tumor sphere assay. Compared with the corresponding cells in monolayer cultures, lung tumor spheres, formed from human non-small cell lung carcinoma cell lines A549 or H1299, showed marked morphologic differences and increased expression of the stem cell markers CD133 and OCT3/4. Lung tumor spheres also exhibited increased tumorigenic potential as only 10,000 lung tumor sphere cells were required to produce xenografts tumors in nude mice, whereas the same number of monolayer cells failed to induce tumors. We also demonstrate that lung tumor spheres showed decreased 26S proteasome activity compared to monolayer. By using the ZsGreen-cODC (C-terminal sequence that directs degradation of Ornithine Decarboxylase) reporter assay in NSCLC cell lines, only less than 1% monolayer cultures were ZsGreen positive indicating low 26S proteasome, whereas lung tumor sphere showed increased numbers of ZsGreen-positive cells, suggesting the enrichment of CSCs in sphere cultures.  相似文献   

5.
While accumulating evidence demonstrates the existence of prostate cancer stem cells (PCSCs), PCSCs have not been isolated and thoroughly characterized. We report here the enrichment and characterization of sphere-propagating cells with stem-like properties from DU145 PC cells in a defined serum-free medium (SFM). Approximately 1.25% of monolayer DU145 cells formed spheres in SFM and 26% of sphere cells formed secondary spheres. Spheres are enriched for cells expressing prostate basal and luminal cytokeratins (34βE12 and CK18) and for cancer stem cell markers, including CD44, CD24, and integrin α2β1. Upon culturing spheres under differentiating media conditions in the presence of 10% serum, cells positive for CD44 and CD24 were substantially reduced. Furthermore, spheres could be generated from the sphere-derived adherent cell cultures and xenograft tumors, demonstrating the stemness of DU145 spheres. We have maintained spheres for more than 30 passages within 1.5 years without noticeable loss of their “stemness”. Sphere cells possess self-renewal capacity, display significant increases in proliferation potential, and initiate xenograft tumors with enhanced capacity compared to monolayer DU145 cells. While EGF promoted the generation and maintenance of these stem-like cells, bFGF inhibited these events. Sphere cells proliferate slowly with a significant reduction in the activation of the PI3K-AKT pathway compared to monolayer DU145 cells. While knockdown of PTEN enhanced AKT activation, this did not affect the generation of primary spheres and the propagation of secondary spheres. Consistent with this observation, we were able to demonstrate the generation and propagation of spheres without the addition of external growth factors. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

6.
肿瘤的发生和发展源于一小部分具有自我更新能力的肿瘤干细胞。胚胎干细胞也具有自我更新和多向分化的特性。胚胎干细胞特异的基质微环境能够提供干细胞正常生长的调控分子,在细胞不断更新的情况下,使增殖和分化达到平衡。受胚胎干细胞调节的基质或胚胎微环境作用于肿瘤细胞,可以使肿瘤细胞获得更多的分化表型,显著降低其恶性程度,抑制肿瘤细胞的侵袭行为。进一步的分子机制研究发现,在肿瘤细胞中高表达的Nodal蛋白会抑制肿瘤细胞分化,而胚胎干细胞分泌的糖基化Lefty蛋白可以负反馈调节Nodal蛋白的作用,从而降低肿瘤细胞的恶性程度。利用组织工程来模拟胚胎干细胞微环境,保留Lefty蛋白,从而逆转肿瘤的方法具有广阔的前景。  相似文献   

7.
This study aims to examine whether or not cancer stem cells exist in malignant peripheral nerve sheath tumors (MPNST). Cells of established lines, primary cultures and freshly dissected tumors were cultured in serum free conditions supplemented with epidermal and fibroblast growth factors. From one established human MPNST cell line, S462, cells meeting the criteria for cancer stem cells were isolated. Clonal spheres were obtained, which could be passaged multiple times. Enrichment of stem cell-like cells in these spheres was also supported by increased expression of stem cell markers such as CD133, Oct4, Nestin and NGFR, and decreased expression of mature cell markers such as CD90 and NCAM. Furthermore, cells of these clonal S462 spheres differentiated into Schwann cells, smooth muscle/fibroblast and neurons-like cells under specific differentiation-inducing cultural conditions. Finally, subcutaneous injection of the spheres into immunodeficient nude mice led to tumor formation at a higher rate compared to the parental adherent cells (66% versus 10% at 2.5 × 10(5)). These results provide evidence for the existence of cancer stem cell-like cells in malignant peripheral nerve sheath tumors.  相似文献   

8.
In recent years, a small number of cells that have stem cell properties were identified in human gliomas called brain tumor stem cells (BTSCs), which were thought to mainly contribute to the initiation and development of gliomas and could be identified by the surface marker CD133. However, recent studies indicated that the expression of CD133 might be regulated by environmental conditions such as hypoxia and that there might be CD133- BTSCs. Genetic mouse models demonstrated that some gliomas originated from transformed neural stem cells (NSCs). Therefore, we investigated the expression of CD15, a surface marker for NSCs, in tumor spheres derived from astrocytoma and ependymoma. CD15+ cells isolated from these tumor spheres had properties of BTSCs including self-renewal, multidifferentiation, and the ability to recapitulate the phenocopy of primary tumors. CD15 exhibited stable expression in long-term cultured tumor spheres, which sustained BTSCs properties, whereas CD133 expression decreased significantly in late passages. Furthermore, CD15+CD133- cells isolated from early or late passages of tumor spheres showed similar characteristics of BTSCs. Examination of glioma samples by immunohistochemistry showed that CD15 was expressed in a subset of human brain tumors. Therefore, CD15 can be used as a marker of stem-like cells derived from brain tumors that might contain CD133- BTSCs.  相似文献   

9.
Neural stem cells/progenitors that give rise to neurons and glia have been identified in different regions of the brain, including the embryonic retina and ciliary epithelium of the adult eye. Here, we first demonstrate the characterization of neural stem/progenitors in postnatal iris pigment epithelial (IPE) cells. Pure isolated IPE cells could form spheres that contained cells expressing retinal progenitor markers in non-adherent culture. The spheres grew by cell proliferation, as indicated by bromodeoxyuridine incorporation. When attached to laminin, the spheres forming IPE derived cells were able to exhibit neural phenotypes, including retinal-specific neurons. When co-cultured with embryonic retinal cells, or grafted into embryonic retina in vivo, the IPE cells could also display the phenotypes of photoreceptor neurons and Muller glia. Our results suggest that the IPE derived cells have retinal stem/progenitor properties and neurogenic potential without gene transfer, thereby providing a novel potential source for both basic stem cell biology and therapeutic applications for retinal diseases.  相似文献   

10.
Cytotoxic function of NK cells is largely suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. The aims of this review are to provide a rationale and a potential mechanism for immunosuppression in cancer and to demonstrate the significance of such immunosuppression in cellular differentiation and progression of cancer. We have recently shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs) as compared to their more differentiated oral squamous carcinoma cells. In addition, human embryonic stem cells, mesenchymal stem cells (hMSCs), dental pulp stem cells (hDPSCs) and induced pluripotent stem cells were all significantly more susceptible to NK-cell-mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB significantly augmented NK-cell function. Total population of monocytes and those depleted of CD16(+) subsets were able to substantially suppress NK-cell-mediated lysis of OSCSCs, hMSCs and hDPSCs. Overall, our results suggest that stem cells but not their differentiated counterparts are significant targets of the NK-cell cytotoxicity. The concept of split anergy in NK cells and its contribution to cell differentiation, tissue repair and regeneration and in tumor resistance and progression will be discussed in this review.  相似文献   

11.
Ovarian cancers are the fifth leading cause of cancer death among US woman. The majority of ovarian cancers belong to a category of serous adenocarcinomas. This type of cancer is often diagnosed at a late stage of the disease. Surgical debulking, followed by chemotherapy is the current treatment. Half of all patients will die within 5 years of diagnosis of the disease. Poor survival may be due to disease progression as a consequence of development of drug resistance, cancer cell heterogeneity within the tumor, or the persistence of cancer stem cells. Cancer stem cells (CSC) are defined as a minority cell type in the tumor, which retains the capacity, through asymmetric division, for self-renewal as well as differentiation into multiple cell types. Through this process, CSC can regenerate the entire tumor phenotype and subsequent metastases. Initial in vitro work in the area of solid tumor CSC biology has focused on the isolation and propagation of cells with CSC-like properties from breast and colon tumors. Breast and colon cell lines with CSC-like properties have been isolated and maintained in vitro for extended periods of time. The in vitro maintenance of these CSC requires growth in hormone-supplemented serum-free media and the use of matrix or growth as tumor spheres (Roberts, Ricci-Vitiani et al., Cammareri et al.). Based on the pioneering work generating breast and colon CSC, our lab has begun to develop methods for the establishment cell lines with CSC-like properties from additional solid tumors. In this article, we describe methods, using defined medium, which allow for the successful establishment of continuous cell cultures from a minority cell type within serous ovarian cancers. The cell lines established using these methods grow in serum-free hormone-supplemented medium either as a monolayer on a matrix, or as tumor spheres in suspension. These cells express markers previously reported for tumor stem cells, including CD44 and CD133, and form tumors that recreate the morphology of the original patient tumor when implanted in immune deficient mice. The introduction of this method will facilitate the expansion of ovarian cancer cells for investigating cancer stem cell biology as well as providing tools to aid in the development of new treatments for this deadly disease.  相似文献   

12.
The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-γ were both observed when PBMCs or NK cells were co-incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells (hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in monocytes significantly augmented NK cell cytotoxicity and secretion of IFN-γ. Taken together, these results suggest that stem cells are significant targets of the NK cell cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells.  相似文献   

13.
Sirtuins are stress‐responsive proteins that direct various post‐translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue‐ and cell type‐specific context. Sirtuin‐driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell‐related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.  相似文献   

14.
最近的一项研究报导,采用流式细胞仪分选技术从人胃癌细胞株中分离出CD44胃癌干细胞. 20~30×103个CD44+细胞入NOD/SCID 鼠腹部皮下和胃浆膜下能形成胃癌移植瘤, 100×103个CD44的细胞入NOD/SCID 鼠体内不形成肿瘤.采用无血清、无粘附间质的干细胞体外培养方法,发现CD44的细胞能形成肿瘤微球体,具有自我更新能力,而CD44的细胞则不形成球形克隆.上述的实验结果说明,在人胃癌细胞株中存在胃癌肿瘤干细胞.据此可以相信,胃癌干细胞是胃癌细胞中具有自我更新及分化潜能的一小群细胞,不能被目前的化疗、放疗等抗癌治疗措施所杀灭,是胃癌术后复发、肿瘤进展扩散转移的根源.胃癌干细胞可能来源于骨髓干细胞.随着对胃癌肿瘤干细胞生物学研究的深入,必将为胃癌的临床诊断和治疗提供新的策略.  相似文献   

15.
Embryonic developmental stages and regulations have always been one of the most intriguing aspects of science. Since the cancer stem cell discovery, striking for cancer development and recurrence, embryonic stem cells and control mechanisms, as well as cancer cells and cancer stem cell control mechanisms become important research materials. It is necessary to reveal the similarities and differences between somatic and cancer cells which are formed of embryonic stem cells divisions and determinations. For this purpose, mouse embryonic stem cells (mESCs), mouse skin fibroblast cells (MSFs) and mouse lung squamous cancer cells (SqLCCs) were grown in vitro and the differences between these three cell lines signalling regulations of mechanistic target of rapamycin (mTOR) and autophagic pathways were demonstrated by immunofluorescence and real-time polymerase chain reaction. Expressional differences were clearly shown between embryonic, cancer and somatic cells that mESCs displayed higher expressional level of Atg10, Hdac1 and Cln3 which are related with autophagic regulation and Hsp4, Prkca, Rhoa and ribosomal S6 genes related with mTOR activity. LC3 and mTOR protein levels were lower in mESCs than MSFs. Thus, the mechanisms of embryonic stem cell regulation results in the formation of somatic tissues whereas that these cells may be the causative agents of cancer in any deterioration.  相似文献   

16.
BORIS/CTCFL is a member of cancer testis antigen family normally expressed in germ cells. In tumors, it is aberrantly expressed although its functions are not completely well-defined. To better understand the functions of BORIS in cancer, we selected the embryonic cancer cells as a model. Using a molecular beacon, which specifically targets BORIS mRNA, we demonstrated that BORIS positive cells are a small subpopulation of tumor cells (3–5% of total). The BORIS-positive cells isolated using BORIS-molecular beacon, expressed higher telomerase hTERT, stem cell (NANOG, OCT4, SOX2) and cancer stem cell marker genes (CD44 and ALDH1) compared to the BORIS-negative tumor cells. In order to define the functional role of BORIS, stable BORIS-depleted embryonic cancer cells were generated. BORIS silencing strongly down-regulated the expression of hTERT, stem cell and cancer stem cell marker genes. Moreover, the BORIS knockdown increased cellular senescence in embryonic cancer cells, revealing a putative role of BORIS in the senescence biological program. Our data indicate an association of BORIS expressing cells subpopulation with the expression of stemness genes, highlighting the critical role played by BORIS in embryonic neoplastic disease.  相似文献   

17.
Stem cell maintenance depends on their surrounding microenvironment, and aberrancies in the environment have been associated with tumorigenesis. However, it remains to be elucidated whether an environmental aberrancy can act as a carcinogenic stress for cellular transformation of differentiating stem cells into cancer stem cells. Here, utilizing mouse embryonic stem cells as a model, it was illustrated that environmental aberrancy during differentiation leads to the emergence of pluripotent cells showing cancerous characteristics. Analogous to precancerous stages, DNA lesions were spontaneously accumulated during embryonic stem cell differentiation under aberrational environments, which activates barrier responses such as senescence and apoptosis. However, overwhelming such barrier responses, piled-up spheres were subsequently induced from the previously senescent cells. The sphere cells exhibit aneuploidy and dysfunction of the Arf-p53 module as well as enhanced tumorigenicity and a strong self-renewal capacity, suggesting development of cancerous stem cells. Our current study suggests that stem cells differentiating in an aberrational environment are at risk of cellular transformation into malignant counterparts.  相似文献   

18.
19.
Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2–93%)/SSEA1 (3–15%)/CXCR4 (1–72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.  相似文献   

20.
Metabolism, is a transversal hot research topic in different areas, resulting in the integration of cellular needs with external cues, involving a highly coordinated set of activities in which nutrients are converted into building blocks for macromolecules, energy currencies and biomass. Importantly, cells can adjust different metabolic pathways defining its cellular identity. Both cancer cell and embryonic stem cells share the common hallmark of high proliferative ability but while the first represent a huge social-economic burden the second symbolize a huge promise. Importantly, research on both fields points out that stem cells share common metabolic strategies with cancer cells to maintain their identity as well as proliferative capability and, vice versa cancer cells also share common strategies regarding pluripotent markers. Moreover, the Warburg effect can be found in highly proliferative non-cancer stem cells as well as in embryonic stem cells that are primed towards differentiation, while a bivalent metabolism is characteristic of embryonic stem cells that are in a true naïve pluripotent state and cancer stem cells can also range from glycolysis to oxidative phosphorylation. Therefore, this review aims to highlight major metabolic similarities between cancer cells and embryonic stem cells demonstrating that they have similar strategies in both signaling pathways regulation as well as metabolic profiles while focusing on key metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号