首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron and copper homeostasis have been studied in various tissues after iron-loading with the polynuclear ferric hydroxide carbohydrate complexes, iron dextran, iron polymaltose, iron sucrose and iron gluconate for four weeks. There were significant increases in the iron content of the different rat tissues compared to controls, with the exception of the brain, which showed no change in its iron content following iron loading. However, the level of iron loading in the different tissues varied according to the preparation administered and only iron dextran was able to significantly increase the iron content of both broncho-alveolar macrophages and heart. The hepatic copper content decreased with iron loading, although this did not reach significance. However the copper content did not alter in the iron loaded broncho-alveolar macrophages. Despite such increases in hepatic iron content, there was little evidence of changes in oxidative stress, the activities of cytosolic (apart from iron dextran) or mitochondrial hepatic superoxide dismutase, SOD, were similar to that of the control rats, confirming the fact that the low reduction potential of these compounds prevents the reduction of the ferric moiety. It was not necessary for macrophages to significantly increase their iron content to initiate changes in NO. release. Iron gluconate and iron sucrose increased NO. release, while iron polymaltose and iron dextran decreased NO. release although only the latter iron preparation significantly increased their iron content. It may be that the speciation of iron within the macrophage is an important determinant in changes in NO. release after ex vivo stimulation. We conclude that tissues loaded with iron by such polynuclear iron complexes have variable loading despite the comparable iron dose. However, there was little evidence for participation of the accumulated iron in free radical reactions although there was some evidence for alteration in immune function of broncho-alveolar macrophages.  相似文献   

2.
The objective of this study was to compare the oxidative stress induced in rat internal organs by the administration of the following clinically used intravenous (IV) iron (Fe) containing compounds: iron sucrose (IS), iron dextran (ID), ferric carboxymaltose and ferumoxytol. Groups of six adult rats received 1 mg/kg of each compound weekly for 5 doses. Seven days following the last dose, animals were euthanized and tissue samples of heart, lung, liver, and kidney were obtained, washed in warmed saline and frozen under liquid nitrogen and stored at ?80 °C for analysis for nitrotyrosine (NT) and dinitro phenyl (DNP) as markers of oxidative stress. All tissues showed a similar pattern of oxidative stress. All Fe products stimulated an increase in the tissue concentration of both NT and DNP. In general, DNP was stimulated significantly less than NT except for IS. DNP was stimulated to an equal degree except for ID where NT was significantly higher than the NT concentrations in all other Fe compounds. ID produced over 10-fold the concentration of NT than any other Fe. IV Fe compounds present a risk of oxidative stress to a variety of internal organs. However, we found that IS was the least damaging and ID was the worst.  相似文献   

3.
The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose.  相似文献   

4.
BackgroundIron overload can result in a disorder in glucose metabolism. However, the underlining mechanism through which iron overload induces beta cell death remains unknown.MethodsAccording to the concentration of ferric ammonium citrate (FAC) and N-acetylcysteine, INS-1 cells were randomly divided into four groups: normal control (FAC 0 μM) group, FAC 80 μM group, FAC 160 μM group, FAC 160μM + NAC group. Cell proliferation was assessed by Cell Counting Kit-8. Reactive oxygen species (ROS) level was further evaluated using flow cytometer with a fluorescent probe. The mitochondrial membrane potential was detected by JC-1 kit, and transmission electron microscopy was used to observe the mitochondrial changes. The related protein expressions were detected by western bolt to evaluate mitophagy status.ResultsIt was shown that FAC treatment decreased INS-1 cell viability in vitro, resulted in a decline in mitochondrial membrane potential, increased oxidative stress level and suppressed mitophagy. Furthermore, these effects could be alleviated by the ROS scavenger.ConclusionsWe proved that increased iron overload primarily increased oxidative stress and further suppressed mitophagy via PTEN-induced putative kinase 1/Parkin pathway, resulting in cytotoxicity in INS-1 cells.  相似文献   

5.
Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. The protective effect of naringin, a grape fruit flavanone, was studied in iron overloaded isolated mouse liver mitochondria, where the isolated mitochondrial fraction was incubated with various concentrations of naringin before ferric ion loading. Iron overloading of mitochondrial fraction resulted in an increase in lipid peroxidation, protein oxidation, and DNA damage, whereas iron overload reduced the glutathione (GSH) concentration, glutathione-S-transferase (GST), glutathione peroxidase (GSHPx), catalase and superoxide dismutase (SOD) activities. Pretreatment of mitochondrial fraction with naringin inhibited iron-induced lipid peroxidation, protein oxidation, and DNA damage. Conversely, naringin supplementation arrested iron-induced depletion in the GSH contents, GSHPx, GST, SOD and catalase activities significantly. Ferric iron reduction assay revealed that naringin could not reduce ferric iron into ferrous iron indicating that it did not exhibit prooxidant activity. Iron free coordination site assay indicated that naringin was unable to occupy all the active sites of iron indicating that naringin did not completely chelate iron. Our study demonstrates that naringin was able to share the burden of endogenous oxidants by inhibiting the iron-induced depletion of all important antioxidant enzymes as well as GSH and may act as a good antioxidant.  相似文献   

6.
1. Metal ion-chelating agents such as EDTA, o-phenanthroline or desferrioxamine inhibit lipid peroxide formation when rat liver microsomes prepared from homogenates made in pure sucrose are incubated with ascorbate or NADPH. 2. Microsomes treated with metal ion-chelating agents do not form peroxide on incubation unless inorganic iron (Fe2+ or Fe3+) in a low concentration is added subsequently. No other metal ion can replace inorganic iron adequately. 3. Microsomes prepared from sucrose homogenates containing EDTA (1mm) do not form lipid peroxide on incubation with ascorbate or NADPH unless Fe2+ is added. Washing the microsomes with sucrose after preparation restores most of the capacity to form lipid peroxide. 4. Lipid peroxide formation in microsomes prepared from sucrose is stimulated to a small extent by inorganic iron but to a greater extent if adenine nucleotides, containing iron compounds as a contaminant, are added. 5. The iron contained in normal microsome preparations exists in haem and in non-haem forms. One non-haem component in which the iron may be linked to phosphate is considered to be essential for both the ascorbate system and NADPH system that catalyse lipid peroxidation in microsomes.  相似文献   

7.
BackgroundIron is an essential element for growth and metabolic activities of all living organisms but remains in its oxyhydroxide ferric ion form in the surrounding. Unavailability of iron in soluble ferrous form led to development of specific pathways and machinery in different organisms to make it available for use and maintain its homeostasis. Iron homeostasis is essential as under different circumstances iron in excess as well as deprivation leads to different pathological conditions in human.ObjectiveThis review highlights the current findings related to iron excess as well as deprivation with regards to cellular proliferation.ConclusionsIron excess is extensively associated with different types of cancers viz. colorectal cancer, breast cancer etc. by producing an oxidative stressed condition and alteration of immune system. Ironically its deprivation also results in anaemic conditions and leads to cell cycle arrest at different phases with mechanism yet to be explored. Iron deprivation arrests cell cycle at G1/S and in some cases at G2/M checkpoints resulting in growth arrest. However, in some cases iron overload arrests cell cycle at G1 phase by blocking certain signalling pathways. Certain natural and synthetic iron chelators are being explored from few decades to combat diseases caused by alteration in iron homeostasis.  相似文献   

8.
When tetanus toxin is made by fermentation with Clostridium tetani, the traditional source of iron is an insoluble preparation called reduced iron powder. This material removes oxygen from the system by forming FeO2 (rust). When inoculated in a newly developed medium lacking animal and dairy products and containing glucose, soy-peptone, and inorganic salts, growth and toxin production were poor without reduced iron powder. The optimum concentration of reduced iron powder for toxin production was found to be 0.5 g/l. Growth was further increased by higher concentrations, but toxin production decreased. Inorganic iron sources failed to replace reduced iron powder for growth or toxin formation. The iron source that came closest was ferrous ammonium sulfate. The organic iron sources ferric citrate and ferrous gluconate were more active than the inorganic compounds but could not replace reduced iron powder. Insoluble iron sources, such as iron wire, iron foil, and activated charcoal, were surprisingly active. Combinations of activated charcoal with soluble iron sources such as ferrous sulfate, ferric citrate, and ferrous gluconate showed increased activity, and the ferrous gluconate combination almost replaced reduced iron powder. It thus appears that the traditional iron source, reduced iron powder, plays a double role in supporting tetanus toxin formation, i.e., releasing soluble sources of iron and providing an insoluble surface.  相似文献   

9.
BackgroundNephrolithiasis is a common urinary disease with a high recurrence rate of secondary stone formation. Several mechanisms are involved in the onset and recurrence of nephrolithiasis, e.g., oxidative stress, inflammation, apoptosis, and epithelial-mesenchymal transition (EMT). Vitexin, a flavonoid monomer derived from medicinal plants that exert many biological effects including anti-inflammatory and anticancer effects, has not been investigated in nephrolithiasis studies. Moreover, pyroptosis, a form of programmed cell death resulting from inflammasome-associated caspase activation, has not been studied in mice with nephrolithiasis.PurposeWe aimed to investigate the protective effect and underlying mechanisms of vitexin in nephrolithiasis, and the related role of pyroptosis in vivo and in vitro.MethodsMouse models of nephrolithiasis were established via intraperitoneal injection of glyoxylate, and cell models of tubular epithelial cells and macrophages were established using calcium oxalate monohydrate (COM). Crystal deposition and kidney tissue injury were evaluated by hematoxylin and eosin, and von Kossa staining. Renal oxidative stress indexes including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), were analyzed. The renal expression of interleukin-1 beta (IL-1β), gasdermin D (GSDMD), osteopontin (OPN), CD44, and monocyte chemotactic protein 1 (MCP-1), and EMT-related proteins in renal tubular epithelial cells was assessed. Cell viability and the apoptosis ratio were evaluated.ResultsIn vivo, vitexin alleviated crystal deposition and kidney tissue injury, and decreased the level of MDA, and increased the levels of SOD, GSH, and CAT. Vitexin also reduced the levels of the pyroptosis-related proteins GSDMD, NLRP3, cleaved caspase-1, and mature IL-1β, which were elevated in mice with nephrolithiasis, and repressed apoptosis and the expression of OPN and CD44. Moreover, vitexin mitigated F4/80-positive macrophage infiltration and MCP-1 expression in the kidneys. Furthermore, an in vitro study showed that vitexin increased the viability of HK-2 cells and THP-1-derived macrophages, which was impaired by treatment with COM crystals, decreased the medium lactate dehydrogenase (LDH) level, and inhibited the expression of pyroptosis-related proteins in HK-2 cells and macrophages. Vitexin repressed EMT of HK-2 cells, with increased expression of pan-cytokeratin (Pan-ck) and decreased expression of Vimentin and alpha-smooth muscle actin (α-SMA), and downregulated the Wnt/β-catenin pathway. Moreover, vitexin suppressed tumor necrosis factor-α (TNF-α) and IL-1β mRNA expression, which was upregulated by COM in macrophages.ConclusionVitexin exerts protective effects against nephrolithiasis by inhibiting pyroptosis activation, apoptosis, EMT, and macrophage infiltration. In addition, GSDMD-related pyroptosis mediates nephrolithiasis.  相似文献   

10.
Iron and aluminum complexes of nitrilotriacetic acid cause severe nephrotoxicity in Wistar rats. In addition, a high incidence of renal cell carcinoma is seen in ferric nitrilotriacetate-treated animals. The present study was performed to see if lipid peroxidation is involved in ferric nitrilotriacetate toxicity. Ferric nitrilotriacetate had more bleomycin-detectable 'free' iron than any ferric salt, while iron complexed with desferrioxamine or ferric chondroitin sulfate had none. The toxicity of ferric nitrilotriacetate in vivo was more pronounced in vitamin E-deficient rats. A thiobarbituric acid-reactive substance was present in the kidneys of vitamin E-deficient rats in amounts markedly elevated compared to vitamin E-sufficient, or vitamin E-supplemented rats. Non-complexed nitrilotriacetate or aluminum nitrilotriacetate did not produce any thiobarbituric acid-reactive substance in vitamin E-sufficient rats died by the 58th day of administration. We suggest that the iron-stimulated production of free radicals leading to lipid peroxidation is the major cause of ferric nitrilotriacetate-mediated renal toxicity. Vitamin E, a known scavenger of free radicals, is effective in protecting against this iron-induced toxicity.  相似文献   

11.

Background

Patients with non-dialysis-dependent chronic kidney disease (ND-CKD) often receive an erythropoiesis-stimulating agent (ESA) and oral iron treatment. This study evaluated whether a switch from oral iron to intravenous ferric carboxymaltose can reduce ESA requirements and improve iron status and hemoglobin in patients with ND-CKD.

Methods

This prospective, single arm and single-center study included adult patients with ND-CKD (creatinine clearance ≤40 mL/min), hemoglobin 11–12 g/dL and iron deficiency (ferritin <100 μg/L or transferrin saturation <20%), who were regularly treated with oral iron and ESA during 6 months prior to inclusion. Study patients received an intravenous ferric carboxymaltose dose of 1,000 mg iron, followed by a 6-months ESA/ ferric carboxymaltose maintenance regimen (target: hemoglobin 12 g/dL, transferrin saturation >20%). Outcome measures were ESA dose requirements during the observation period after initial ferric carboxymaltose treatment (primary endpoint); number of hospitalizations and transfusions, renal function before and after ferric carboxymaltose administration, number of adverse reactions (secondary endpoints). Hemoglobin, mean corpuscular volume, ferritin and transferrin saturation were measured monthly from baseline until end of study. Creatinine clearance, proteinuria, C-reactive protein, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase bimonthly from baseline until end of study.

Results

Thirty patients were enrolled (age 70.1±11.4 years; mean±SD). Mean ESA consumption was significantly reduced by 83.2±10.9% (from 41,839±3,668 IU/patient to 6,879±4,271 IU/patient; p<0.01). Hemoglobin increased by 0.7±0.3 g/dL, ferritin by 196.0±38.7 μg/L and transferrin saturation by 5.3±2.9% (month 6 vs. baseline; all p<0.01). No ferric carboxymaltose-related adverse events were reported and no patient withdrew or required transfusions during the study.

Conclusion

Among patients with ND-CKD and stable normal or borderline hemoglobin, switching from oral iron to intravenous ferric carboxymaltose was associated with significant improvements in hematological and iron parameters and a significant reduction in ESA dose requirements in this single-center pilot study.

Trial Registration

ClinicalTrials.gov NCT02232906  相似文献   

12.
Harpagophytum procumbens, popularly known as devil’s claw, is a plant commonly used in the treatment of diseases of inflammatory origin. The anti-inflammatory effects of H. procumbens have been studied; however, the mechanism of action is not elucidated. It is known that excess of reactive oxygen and nitrogen species may contribute to increasing tissue damage due to inflammation. In the present study, we examined the effects of H. procumbens infusion, crude extract and fractions on lipid peroxidation (brain homogenates) induced by different pro-oxidants (Fe2+ or sodium nitroprusside) and the effects of ethyl acetate fraction (rich in phenolic compounds) on antioxidant defenses (catalase activity and thiol levels) and cell damage (brain cortical slices) induced by different pro-oxidants. All tested extracts of H. procumbens inhibited lipid peroxidation in a concentration-dependent manner. Furthermore, the ethyl acetate fraction had the highest antioxidant effects either by decreasing lipid peroxidation and cellular damage or restoring thiols levels and catalase activity. Taken together, our results showed that H. procumbens acts either by preventing oxidative stress or loss of cell viability. Thus, the previously reported anti-inflammatory effect of H. procumbens could also be attributed to its antioxidant activity.  相似文献   

13.

Background and Aims

Secondary thrombocytosis is a clinical feature of unknown significance. In inflammatory bowel disease (IBD), thrombocytosis is considered a marker of active disease; however, iron deficiency itself may trigger platelet generation. In this study we tested the effect of iron therapy on platelet counts in patients with IBD-associated anemia.

Methods

Platelet counts were analyzed before and after iron therapy from four prospective clinical trials. Further, changes in hemoglobin, transferrin saturation, ferritin, C-reactive protein, and leukocyte counts, before and after iron therapy were compared. In a subgroup the effect of erythropoietin treatment was tested. The results were confirmed in a large independent cohort (FERGIcor).

Results

A total of 308 patient records were available for the initial analysis. A dose-depended drop in platelet counts (mean 425 G/L to 320 G/L; p<0.001) was found regardless of the type of iron preparation (iron sulphate, iron sucrose, or ferric carboxymaltose). Concomitant erythropoietin therapy as well as parameters of inflammation (leukocyte counts, C-reactive protein) had no effect on the change in platelet counts. This effect of iron therapy on platelets was confirmed in the FERGIcor study cohort (n=448, mean platelet counts before iron therapy: 383 G/L, after: 310 G/L, p<0.001).

Conclusion

Iron therapy normalizes elevated platelet counts in patients with IBD-associated anemia. Thus, iron deficiency is an important pathogenetic mechanism of secondary thrombocytosis in IBD.  相似文献   

14.
Iron overload aggravates tissue damage caused by ischemia and ethanol intoxication. The underlying mechanisms of this phenomenon are not yet clear. To clarify these mechanisms we followed free iron (“loosely” bound redox-active iron) concentration in livers from rats subjected to experimental iron overload, acute ethanol intoxication, and ex vivo warm ischemia. The levels of free iron in non-homogenized liver tissues, liver homogenates, and hepatocyte cultures were analyzed by means of EPR spectroscopy. Ischemia gradually increased the levels of endogenous free iron in liver tissues and in liver homogenates. The increase was accompanied by the accumulation of lipid peroxidation products. Iron overload alone, known to increase significantly the total tissue iron, did not affect either free iron levels or lipid peroxidation. Homogenization of iron-loaded livers, however, resulted in the release of a significant portion of free iron from endogenous depositories. Acute ethanol intoxication increased free iron levels in liver tissue and diminished the portion of free iron releasing during homogenization. Similarly to liver tissue, the primary hepatocyte culture loaded with iron in vitro released significantly more free iron during homogenization compared to non iron-loaded hepatocyte culture. Analyzing three possible sources of free iron release under these experimental conditions in liver cells, namely ferritin, intracellular transferrin-receptor complex and heme oxygenase, we suggest that redox active free iron is released from ferritin under ischemic conditions whereas ethanol and homogenization facilitate the release of iron from endosomes containing transferrin-receptor complexes.  相似文献   

15.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, >or=50 microg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24 h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

16.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, ≥50?μg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24?h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

17.
It is known that nonheme iron accumulates and free radicals are generated in skin exposed to ultraviolet (UV) light. Iron ions have a role in skin photodamage by participating in the formation of reactive oxygen species. In this study, we evaluated the effect of egg yolk phosvitin on UV-light-induced oxidative stress. Mouse dorsal skin homogenate was exposed to UVA light in the presence or absence of ferric nitrilotriacetate, (FeNTA). Lipid peroxidation was determined by measuring thiobarbituric acid-reactive substances (TBARS). The TBARS concentration increased with increasing FeNTA concentration and UV-light-exposure time. In the presence of FeNTA, phosvitin more effectively inhibited in vitro lipid peroxidation than did bovine serum albumin. According to results of electron spin resonance studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent, phosvitin suppressed the formation of hydroxyl radicals. These results suggest that UV-light-induced oxidative stress can be reduced by phosvitin.  相似文献   

18.
Iron uptake by Chang liver cells in culture is about thirty times as great when ferric nitriloacetate is used as a donor as when iron-transferrin is used. Iron uptake from ferric citrate is no greater than from iron-transferrin. Most of the intracellular iron derived from transferrin is found in the supernatant after 20 000 × g centrifugation of the cell homogenate for 40 min: about half of this is in the form of ferritin. Iron derived from ferric nitriloacetate is found largley in the membranous pellet after centrifugation and very little of this is in the form of ferritin.Iron incorporated in cytosol ferritin is easily available for chelation by desferrioxamine and this process is facilitated by ascorbic acid. Membrane-bound iron is less available for chelation. This tissue culture model forms a convenient basis for the study of iron overlead and iron chelation.  相似文献   

19.
Reticulocytes suspended in low ionic strength media such as isotonic sucrose solution efficiently take up non-transferrin-bound iron and utilize it for heme synthesis. The present study was undertaken to determine how such media facilitate iron utilization by the cells. The effects of changes in membrane surface potential, membrane permeability, cell size, transmembrane potential difference, oxidation state of the iron, and lipid peroxidation were investigated. Iron uptake to heme, cytosol, and stromal fractions of cells was measured using rabbit reticulo-cytes incubated with 59Fe-labelled Fe(II) in 0.27 M sucrose, pH 6.5. Suspension of the cells in sucrose led to increased membrane permeability, loss of intracellular K+, decreased cell size, and increased transmembrane potential difference. However, none of these changes could account for the high efficiency of iron uptake which was observed. The large negative membrane surface potential which occurs in sucrose was modified by the addition of mono-, di-, tri-, and polyvalent cations to the solution. This inhibited iron uptake to a degree which for many cations varied with their valency. Other cations (Mn2+, Co2+, Ni2+, Zn2+) were also very potent inhibitors, probably due to direct action on the transport process. Ferricyanide inhibited iron uptake, while ferrocyanide and ascorbate increased the uptake of Fe(III) but not Fe(II). It is concluded that the high negative surface potential of reticulocytes suspended in sucrose solution facilitates iron uptake by aiding the approach of iron to the transport site on the cell membrane. The iron is probably transported into the cell in the ferrous form. © 1994 wiley-Liss, Inc.  相似文献   

20.
Iron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH) derivatives of ferrocene) against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method. Also, the redox-activity of each compound was determined in a physiologically relevant medium. Toxicity toward Artemia salina at different developmental stages was measured, as well as the amount of lipid peroxidation. Our results show that polymer-coated iron metallodrugs are stable, non-redox-active and non-toxic at the concentrations studied (up to 300 µM). However, TMH derivatives of ferrocene were less stable and more redox-active than the parent compound, and TMH-ferrocene displayed toxicity and lipid peroxidation to A. salina, unlike the other compounds. Our results indicate that iron metallodrugs based on polymer coating do not present direct toxicity at low levels of emission; however other iron species (eg. metallocenes), may be deleterious for aquatic organisms. We suggest that ecotoxicity depends more on metal speciation than on the total amount of metal present in the metallodrugs. Future studies with discarded metallodrugs should consider the chemical speciation of the metal present in the composition of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号