首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The halophyte model plant Eutrema salsugineum (Brassicaceae) disjunctly occurs in temperate to subarctic Asia and North America. This vast, yet extremely discontinuous distribution constitutes an ideal system to examine long‐distance dispersal and the ensuing accumulation of deleterious mutations as expected in expanding populations of selfing plants. In this study, we resequenced individuals from 23 populations across the range of Esalsugineum. Our population genomic data indicate that Esalsugineum migrated “out of the Altai region” at least three times to colonize northern China, northeast Russia and western China. It then expanded its distribution into North America independently from northeast Russia and northern China, respectively. The species colonized northern China around 33.7 thousand years ago (kya) and underwent a considerable expansion in range size approximately 7–8 kya. The western China lineage is likely a hybrid derivative of the northern China and Altai lineages, originating approximately 25–30 kya. Deleterious alleles accumulated in a stepwise manner from (a) Altai to northern China and North America and (b) Altai to northeast Russia and North America. In summary, Esalsugineum dispersed from Asia to North America and deleterious mutations accumulated in a stepwise manner during the expansion of the species’ distribution.  相似文献   

2.
Repeated climate change during glacial and interglacial periods of the Quaternary led to mass migrations that resulted in disjunct distributions for many species. However, few studies have examined the processes that form disjunct distributions in Northeast Asia (NEA). In this study, we examined the disjunct distribution of Betula davurica Pall. in the Japanese archipelago. This species is a dominant canopy tree found in cool-temperate deciduous broad-leaved forests of continental NEA. We hypothesized that Quaternary climate change caused the present disjunct distribution pattern of this species. To test this hypothesis, we adopted a species distribution model and examined a series of potential habitats in the Last Glacial Maximum (LGM), the mid-Holocene, and the present. We generated models in MaxEnt with B. davurica presence as the response variable and six bioclimatic variables as predictor variables. During the LGM, projected potential habitats were distributed around the Korean Peninsula, East China, and the Japanese archipelago, excluding Hokkaido. In the mid-Holocene, habitats retreated both from East China and western Japan, remained unchanged in the Korean Peninsula and central Honshu mountains, and expanded to northern China, the Russian Far East, as well as northern Japan (Hokkaido). Thus, post-LGM global warming led to an expansion of B. davurica distribution to northern parts of continental NEA, along with a retreat in the Japanese archipelago. This shift in populations formed the present disjunct distribution.  相似文献   

3.
Peña, C., Nylin, S., Freitas, A. V. L. & Wahlberg, N. (2010). Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae).—Zoologica Scripta, 39, 243–258. The diverse butterfly subtribe Euptychiina was thought to be restricted to the Americas. However, there is mounting evidence for the Oriental Palaeonympha opalina being part of Euptychiina and thus a disjunct distribution between it (in eastern Asia) and its sister taxon (in eastern North America). Such a disjunct distribution in both eastern Asia and eastern North America has never been reported for any butterfly taxon. We used 4447 bp of DNA sequences from one mitochondrial gene and four nuclear genes for 102 Euptychiina taxa to obtain a phylogenetic hypothesis of the subtribe, estimate dates of origin and diversification for major clades and perform a biogeographic analysis. Euptychiina originated 31 Ma in South America. Early Euptychiina dispersed from North to South America via the temporary connection known as GAARlandia during Eocene–Oligocene times. The current disjunct distribution of the Oriental Palaeonympha opalina is the result of a northbound dispersal of a lineage from South America into eastern Asia via North America. The common ancestor of Palaeonympha and its sister taxon Megisto inhabited the continuous forest belt across North Asia and North America, which was connected by Beringia. The closure of this connection caused the split between Palaeonympha and Megisto around 13 Ma and the severe extinctions in western North America because of the climatic changes of the Late Miocene (from 13.5 Ma onwards) resulted in the classic ‘eastern Asia and eastern North America’ disjunct distribution.  相似文献   

4.
Background and Aims The genus Rosa (150–200 species) is widely distributed throughout temperate and sub-tropical habitats from the northern hemisphere to tropical Asia, with only one tropical African species. In order to better understand the evolution of roses, this study examines infrageneric relationships with respect to conventional taxonomy, considers the extent of allopolyploidization and infers macroevolutionary processes that have led to the current distribution of the genus.Methods Phylogenetic relationships among 101 species of the genus Rosa were reconstructed using sequences from the plastid psbA-trnH spacer, trnL intron, trnL-F spacer, trnS-G spacer and trnG intron, as well as from nuclear glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which was used to identify putative allopolyploids and infer their possible origins. Chloroplast phylogeny was used to estimate divergence times and reconstruct ancestral areas.Key Results Most subgenera and sections defined by traditional taxonomy are not monophyletic. However, several clades are partly consistent with currently recognized sections. Allopolyploidy seems to have played an important role in stabilizing intersectional hybrids. Biogeographic analyses suggest that Asia played a central role as a genetic reservoir in the evolution of the genus Rosa.Conclusions The ancestral area reconstruction suggests that despite an early presence on the American continent, most extant American species are the results of a later re-colonization from Asia, probably through the Bering Land Bridge. The results suggest more recent exchanges between Asia and western North America than with eastern North America. The current distribution of roses from the Synstylae lineage in Europe is probably the result of a migration from Asia approx. 30 million years ago, after the closure of the Turgai strait. Directions for a new sectional classification of the genus Rosa are proposed, and the analyses provide an evolutionary framework for future studies on this notoriously difficult genus.  相似文献   

5.
Despite considerable progress, many details regarding the evolution of the Arcto-Tertiary flora, including the timing, direction, and relative importance of migration routes in the evolution of woody and herbaceous taxa of the Northern Hemisphere, remain poorly understood. Meehania (Lamiaceae) comprises seven species and five subspecies of annual or perennial herbs, and is one of the few Lamiaceae genera known to have an exclusively disjunct distribution between eastern Asia and eastern North America. We analyzed the phylogeny and biogeographical history of Meehania to explore how the Arcto-Tertiary biogeographic hypothesis and two possible migration routes explain the disjunct distribution of Northern Hemisphere herbaceous plants. Parsimony and Bayesian inference were used for phylogenetic analyses based on five plastid sequences (rbcL, rps16, rpl32-trnH, psbA-trnH, and trnL-F) and two nuclear (ITS and ETS) gene regions. Divergence times and biogeographic inferences were performed using Bayesian methods as implemented in BEAST and S-DIVA, respectively. Analyses including 11 of the 12 known Meehania taxa revealed incongruence between the chloroplast and nuclear trees, particularly in the positions of Glechoma and Meehania cordata, possibly indicating allopolyploidy with chloroplast capture in the late Miocene. Based on nrDNA, Meehania is monophyletic, and the North American species M. cordata is sister to a clade containing the eastern Asian species. The divergence time between the North American M. cordata and the eastern Asian species occurred about 9.81 Mya according to the Bayesian relaxed clock methods applied to the combined nuclear data. Biogeographic analyses suggest a primary role of the Arcto-Tertiary flora in the study taxa distribution, with a northeast Asian origin of Meehania. Our results suggest an Arcto-Tertiary origin of Meehania, with its present distribution most probably being a result of vicariance and southward migrations of populations during climatic oscillations in the middle Miocene with subsequent migration into eastern North America via the Bering land bridge in the late Miocene.  相似文献   

6.
Phylogenetic analyses were conducted for Astilbe (Saxifragaceae), an Asian/eastern North American disjunct genus, using sequences of nuclear ribosomal internal transcribed spacer (ITS) and plastid matK, trnL‐trnF and psbA‐trnH regions. The monophyly of Astilbe is well supported by both ITS and plastid sequences. Topological incongruence was detected between the plastid and the ITS trees, particularly concerning the placement of the single North American species, A. biternata, which may be most probably explained by its origin involving hybridization and/or allopolyploidy with plastid capture. In Astilbe, all species with hermaphroditic flowers constitute a well‐supported clade; dioecious species form a basal grade to the hermaphroditic clade. Astilbe was estimated to have split with Saxifragopsis from western North America at 20.69 Ma (95% HPD: 12.14–30.22 Ma) in the early Miocene. This intercontinental disjunction between Astilbe and Saxifragopsis most likely occurred via the Bering land bridge. The major clade of Astilbe (all species of the genus excluding A. platyphylla) was inferred to have a continental Asian origin. At least three subsequent migrations or dispersals were hypothesized to explain the expansion of Astilbe into North America, Japan and tropical Asian islands. The intercontinental disjunct lineage in Astilbe invokes a hybridization event either in eastern Asia or in North America. This disjunction in Astilbe may be explained by a Beringian migration around 3.54 Ma (95% high posterior density: 1.29–6.18 Ma) in the late Tertiary, although long‐distance dispersal from eastern Asia to North America is also likely. The biogeographical connection between continental Asia, Taiwan, the Philippines and other tropical Asian islands in Astilbe provides evidence for the close floristic affinity between temperate or alpine south‐western China and tropical Asia. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

7.
Abstract Pachysandra is an eastern Asian–North American disjunct genus with three species, two in eastern Asia (Pachysandra axillaris and Pachysandra terminalis) and one in eastern North America (Pachysandra procumbens). Although morphological and cytological studies suggest a close affinity of P. procumbens with P. axillaris, molecular data from nuclear and chloroplast DNA regions have provided conflicting signals. In this study, we tested previous phylogenetic hypotheses using sequences of nuclear ribosomal DNA internal transcribed spacers and chloroplast ndhF gene from multiple individuals of each of the three species. We also estimated the time of divergence between eastern Asia and eastern North America. Our results support the morphological and cytological conclusion that P. procumbens is more closely related to P. axillaris than to P. terminalis. The estimated time of divergence of P. axillaris and P. procumbens was 14.6±5.5 mya, consistent with estimates from many other eastern Asian–North American disjunct genera. The migration of Pachysandra populations from eastern Asia to North America might have occurred by way of the North Atlantic land bridge.  相似文献   

8.
木兰科(Magnoliaceae)的起源、进化和地理分布   总被引:13,自引:0,他引:13  
木兰科为亚洲-美洲间断分布科,全世界有15属,246种,主要分布于亚洲东南部的热带、亚热带地区,从喜马拉雅至日本,向南达新几内亚及新不列颠;少数种类分布于北美东南部、中美至南美巴西.中国有11属,约99种.木兰科的现代分布中心在东亚-东南亚地区.根据木兰科的化石记录、系统发育和现代分布,推测其起源时间为早白垩纪,甚至更早.起源地可能在中国的西南地区,并由此向外辐射,向东经日本、俄罗斯远东地区经白令陆桥进入北美;向西经西亚、欧洲,通过格陵兰进入北美,然后到达南美;向南经印度支那、马来西亚,直至新几内亚.东亚-北美间断分布的形成是受第四纪冰期的影响;南美的木兰科是从北美迁移而来.  相似文献   

9.
木兰科(Magnoliaceae)的起源、进化和地理分布   总被引:31,自引:1,他引:30  
木兰科为亚洲-美洲间断分布科,全世界有15属,246种,主要分布于亚洲东南部的热带、亚热带地区,从喜马拉雅至日本,向南达新几内亚及新不列颠;少数种类分布于北美东南部、中美至南美巴西.中国有11属,约99种.木兰科的现代分布中心在东亚-东南亚地区.根据木兰科的化石记录、系统发育和现代分布,推测其起源时间为早白垩纪,甚至更早.起源地可能在中国的西南地区,并由此向外辐射,向东经日本、俄罗斯远东地区经白令陆桥进入北美;向西经西亚、欧洲,通过格陵兰进入北美,然后到达南美;向南经印度支那、马来西亚,直至新几内亚.东亚-北美间断分布的形成是受第四纪冰期的影响;南美的木兰科是从北美迁移而来.  相似文献   

10.
Given that East Asia is located south‐west of Beringia and was less glaciated during the Pleistocene, species at higher latitudes were able to expand their range in this region during climate cooling. Although southward migration is an inevitable colonization process, the biogeographical history of the disjunct ranges of higher‐latitude species in East Asia has been investigated less extensively. Here, we assess whether their disjunct distributions in the Japanese archipelago connected sufficiently with Beringia or persisted in isolation following their establishment. Sequences of nine nuclear loci were determined for Cassiope lycopodioides (Ericaceae) from the Japanese archipelago as well as its surrounding areas, Kamchatka and Alaska. According to the geographical pattern of genetic diversity, the northern populations from Kamchatka to the northern part of the Japanese archipelago were similar genetically and were differentiated from populations in central Japan. Our study suggested that the distribution of C. lycopodioides was connected between the northern part of the Japanese archipelago and south‐western Beringia due to Pleistocene climate cooling. Conversely, central Japan harboured a disjunct range after its establishment. These inferences suggest that widespread range expansion in northern East Asia was plausible for species distributed in Beringia. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 497–509.  相似文献   

11.
Nyssa (Nyssaceae, Cornales) represents a classical example of the well‐known eastern Asian–eastern North American floristic disjunction. The genus consists of three species in eastern Asia, four species in eastern North America, and one species in Central America. Species of the genus are ecologically important trees in eastern North American and eastern Asian forests. The distribution of living species and a rich fossil record of the genus make it an excellent model for understanding the origin and evolution of the eastern Asian–eastern North American floristic disjunction. However, despite the small number of species, relationships within the genus have remained unclear and have not been elucidated using a molecular approach. Here, we integrate data from 48 nuclear genes, fossils, morphology, and ecological niche to resolve species relationships, elucidate its biogeographical history, and investigate the evolution of morphology and ecological niches, aiming at a better understanding of the well‐known EA–ENA floristic disjunction. Results showed that the Central American (CAM) Nyssa talamancana was sister to the remaining species, which were divided among three, rapidly diversified subclades. Estimated divergence times and biogeographical history suggested that Nyssa had an ancestral range in Eurasia and western North America in the late Paleocene. The rapid diversification occurred in the early Eocene, followed by multiple dispersals between and within the Erasian and North American continents. The genus experienced two major episodes of extinction in the early Oligocene and end of Neogene, respectively. The Central American N. talamancana represents a relic lineage of the boreotropical flora in the Paleocene/Eocene boundary that once diversified in western North America. The results supported the importance of both the North Atlantic land bridge and the Bering land bridge (BLB) for the Paleogene dispersals of Nyssa and the Neogene dispersals, respectively, as well as the role of Central America as refugia of the Paleogene flora. The total‐evidence‐based dated phylogeny suggested that the pattern of macroevolution of Nyssa coincided with paleoclimatic changes. We found a number of evolutionary changes in morphology (including wood anatomy and leaf traits) and ecological niches (precipitation and temperature) between the EA–ENA disjunct, supporting the ecological selection driving trait evolutions after geographic isolation. We also demonstrated challenges in phylogenomic studies of lineages with rapid diversification histories. The concatenation of gene data can lead to inference of strongly supported relationships incongruent with the species tree. However, conflicts in gene genealogies did not seem to impose a strong effect on divergence time dating in our case. Furthermore, we demonstrated that rapid diversification events may not be recovered in the divergence time dating analysis using BEAST if critical fossil constraints of the relevant nodes are not available. Our study provides an example of complex bidirectional exchanges of plants between Eurasia and North America in the Paleogene, but “out of Asia” migrations in the Neogene, to explain the present disjunct distribution of Nyssa in EA and ENA.  相似文献   

12.
The hickory genus (Carya) contains ca. 17 species distributed in subtropical and tropical regions of eastern Asia and subtropical to temperate regions of eastern North America. Previously, the phylogenetic relationships between eastern Asian and eastern North American species of Carya were not fully confirmed even with an extensive sampling, biogeographic and diversification patterns had thus never been investigated in a phylogenetic context. We sampled 17 species of Carya and 15 species representing all other genera of the Juglandaceae as outgroups, with eight nuclear and plastid loci to reconstruct the phylogeny of Carya. The phylogenetic positions of seven extinct genera of the Juglandaceae were inferred using morphological characters and the molecular phylogeny as a backbone constraint. Divergence times within Carya were estimated with relaxed Bayesian dating. Biogeographic analyses were performed in DIVA and LAGRANGE. Diversification rates were inferred by LASER and APE packages. Our results support two major clades within Carya, corresponding to the lineages of eastern Asia and eastern North America. The split between the two disjunct clades is estimated to be 21.58 (95% HPD 11.07-35.51) Ma. Genus-level DIVA and LAGRANGE analyses incorporating both extant and extinct genera of the Juglandaceae suggested that Carya originated in North America, and migrated to Eurasia during the early Tertiary via the North Atlantic land bridge. Fragmentation of the distribution caused by global cooling in the late Tertiary resulted in the current disjunction. The diversification rate of hickories in eastern North America appeared to be higher than that in eastern Asia, which is ascribed to greater ecological opportunities, key morphological innovations, and polyploidy.  相似文献   

13.
Agastache sect. Agastache consists of seven species in North America and one disjunct in eastern Asia. Starch-gel electrophoresis of enzymatic proteins was employed to assess genetic relationships among these species and to estimate the amount of genetic divergence between the North American and Asian populations. Species of the western United States appear to be better adapted for outcrossing than are the others and are much more genetically variable, with higher levels of heterozygosity per individual, more alleles per species, and higher percentages of polymorphic loci per population. Nonmetric multidimensional scaling of Nei's genetic distances among 32 populations partitioned the section into four discrete groups: 1) A. nepetoides (eastern North America), 2) A. scrophulariifolia and A. foeniculum (eastern and central North America), 3) the four species of the western United States (A. urticifolia, A. occidentalis, A. parvifolia and A. cusickii) and 4) A. rugosa (eastern Asia). Asian Agastache, separated from its American congeners for over twelve million years, differed from American populations at two of fifteen loci surveyed. Nei's genetic distances between Asian and North American populations ranged from 0.2877 to 0.6734.  相似文献   

14.
This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.  相似文献   

15.
Using isoenzyme analysis, 35 populations of Juniperus communis L. from various parts of the Russian species range and by one population from Sweden and Alaska were studied. The total sample size was 1200 plants. As a result, the existence of J. communis var. oblonga in North Caucasus and J. communis var. depressa in North America was confirmed, but genetic differences between J. communis var. communis and J. communis var. saxatilis were not detected in the main part of the Russian species range (European part of Russia, Ural, Siberia). These populations proved to be genetically uniform with the same predominant allelic frequencies, which may evidence recent settling of this species from one of Central or East European refugium. J. communis var. saxatilis from northeastern Russia inhabiting the region behind Verkhoyansk mountain and Russian Far East showed considerable differentiation in frequencies of alleles at three loci and geographical subdivision. These populations also exhibit high intrapopulation variation. This can be connected with the refugium in this territory. The origin of this group is probably connected with migrations from Central Asia (Tibet) in the direction to northeastern Russia along mountains connecting Central and North Asia. It is also assumed that migrations of this species previously proceeded across the Beringian land bridge.  相似文献   

16.
In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy.  相似文献   

17.
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non‐native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.  相似文献   

18.
Eupatorium were examined by sequencing the internal transcribed spacers (ITS) of nuclear ribosomal DNA and restriction site analysis of chloroplast DNA. Molecular data provided strong evidence that (1) this genus originated in North America, (2) the genus diverged into three morphological species groups, Eutrochium, Traganthes and Uncasia in North America, and (3) one of the North American Uncasia lineages migrated into temperate Europe and eastern Asia over the Bering land bridge. The estimated divergence times support a late Miocene to early Pliocene migration from North America to Eurasia via the Bering land bridge. A European species was sister to all of the eastern Asian species examined. The disjunct distribution pattern of the genus Eupatorium is incongruent with the classical Arcto-Tertiary geoflora concept. Received 13 September 1999/ Accepted in revised form 4 January 2000  相似文献   

19.
The species richness of 109 amphi-Pacific disjunct genera was examined in eastern Asia and North America. Although the entire flora of eastern Asia contains approximately one-third more species than that of North America, the difference in species richness among disjunct taxa is less. When woody and herbaceous genera are considered separately, the former exhibit a strong diversity bias favouring eastern Asia whereas there is no significant difference in diversity between continents among herbaceous genera. This result is not due to habitat differences between woody and herbaceous genera, because the disjunct herbs inhabit primarily moist forests and woodlands. This result is also not related to relative phylogenetic advancement, even though older major lineages of plants tend to have a predominance of woody taxa. Woody genera are distributed in lower latitudes than herbaceous genera on both continents, and both woody and herbaceous genera are distributed in lower latitudes in eastern Asia than in North America. The North American temperate flora is primarily a relict of a flora form 7 more widespread throughout the Northern Hemisphere. Contemporary patterns of diversity suggest that the effects of climate changes in the late Tertiary were less severe in eastern Asia and promoted diversification, but were more severe in North America and may have caused widespread extinction. The difference in the effect of climate change on diversity in herbaceous and woody lineages reflects the different ecological relationships of species having these contrasting life forms. Clearly, the contemporary floras of eastern Asia and North America bear the imprint of history and emphasize the important interface between ecological relationships and evolutionary responses.  相似文献   

20.
Understanding the evolutionary processes in species at the margins of their range is of great significance, because marginal populations may harbor local adaptations and will initiate further expansion in response to changes in the environment. Here we examined genetic variation in two nuclear genes and one chloroplast intergenic spacer in 13 northern marginal populations and one geographically central population of Bombax ceiba, a tree distributed mainly in tropical regions. Our results revealed an extremely low level of genetic diversity in each population at the northern margin of its range and strong genetic differentiation between southern China and South Asia. Cultivated and natural populations showed no significant differences in genetic variability. Genetic admixture in a nuclear gene was detected in 10 of the 13 populations at the northern margin of their range. The founder effect, in which a small number of individuals colonize the northern margins of its range, may explain the extremely low genetic diversity. During the establishment of new populations, different source populations may mix and undergo further genetic drift and differentiation. This study indicates that patterns of genetic diversity in tropical species at the margin of their range may also be severely influenced by founder effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号