首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The F-box protein is the substrate recognition subunit of SCF (SKP1/CUL1/F-box) E3 ubiquitin ligase complex, a multicomponent RING-type E3 ligase involved in the regulation of numerous cellular processes by targeting critical regulatory proteins for ubiquitination. However, whether and how F-box proteins are regulated is largely unknown. Here we report that FBXO28, a poorly characterized F-box protein, is a novel substrate of SCF E3 ligase. Pharmaceutical or genetic inhibition of neddylation pathway that is required for the activation of SCF stabilizes FBXO28 and prolongs its half-life. Meanwhile, FBXO28 is subjected to ubiquitination and cullin1-based SCF complex promotes FBXO28 degradation. Moreover, deletion of F-box domain stabilizes FBXO28 and knockdown of endogenous FBXO28 strongly upregulates exogenous FBXO28 expression. Taken together, these data reveal that SCFFBXO28 is the E3 ligase responsible for the self-ubiquitination and proteasomal degradation of FBXO28, providing a new clue for the upstream signaling regulation for F-box proteins.  相似文献   

2.
Cullin 4B (CUL4B) is a scaffold protein involved in the assembly of cullin-RING ubiquitin ligase (E3) complexes. Contemporary reports have identified multiple mutations of CUL4B gene as being causally associated with X-linked intellectual disability (XLID). Identifying the specific protein substrates will help to better understand the physiological functions of CUL4B. The current study identified Jun activation domain-binding protein (Jab1/CSN5) in the COP9 signalosome (CSN) complex as a novel proteolytic target for the CUL4B ubiquitin ligase complex. The impaired degradation of Jab1 was observed in cells after RNAi-mediated CUL4B depletion. Integrity of DDB1-CUL4B-ROC1 was further demonstrated to be indispensable for the degradation of Jab1. In addition, the degradation of Jab1 is independent of CUL4A, a cullin family member closely related to CUL4B. In vitro and in vivo ubiquitination assays revealed that CUL4B promoted the polyubiquitination of Jab1. Interestingly, CUL4B-silenced cells were shown to exhibit abnormal upregulation of bone morphogenetic protein (BMP) signaling. Furthermore, in vivo studies of embryonic fibroblasts in Cul4b-deficient mice demonstrated Jab1 accumulation and increased activation of the BMP signaling pathway. Together, the current findings demonstrate the CUL4B E3 ubiquitin ligase plays a key role in targeting Jab1 for degradation, potentially revealing a previously undocumented mechanism for regulation of the BMP signaling pathway involved with the CUL4B-based E3 complex. This observation may provide novel insights into the molecular mechanisms underlying CUL4B-associated XLID pathogenesis.  相似文献   

3.
Li X  Lu D  He F  Zhou H  Liu Q  Wang Y  Shao C  Gong Y 《The Journal of biological chemistry》2011,286(37):32344-32354
Cullin 4B (CUL4B) is a scaffold protein that assembles cullin-RING ubiquitin ligase (E3) complexes. Recent studies have revealed that germ-line mutations in CUL4B can cause mental retardation, short stature, and many other abnormalities in humans. Identifying specific CUL4B substrates will help to better understand the physiological functions of CUL4B. Here, we report the identification of peroxiredoxin III (PrxIII) as a novel substrate of the CUL4B ubiquitin ligase complex. Two-dimensional gel electrophoresis coupled with mass spectrometry showed that PrxIII was among the proteins up-regulated in cells after RNAi-mediated CUL4B depletion. The impaired degradation of PrxIII observed in CUL4B knockdown cells was confirmed by Western blot. We further demonstrated that DDB1 and ROC1 in the DDB1-CUL4B-ROC1 complex are also indispensable for the proteolysis of PrxIII. In addition, the degradation of PrxIII is independent of CUL4A, a cullin family member closely related to CUL4B. In vitro and in vivo ubiquitination assays revealed that CUL4B promoted the polyubiquitination of PrxIII. Furthermore, we observed a significant decrease in cellular reactive oxygen species (ROS) production in CUL4B-silenced cells, which was associated with increased resistance to hypoxia and H(2)O(2)-induced apoptosis. These findings are discussed with regard to the known function of PrxIII as a ROS scavenger and the high endogenous ROS levels required for neural stem cell proliferation. Together, our study has identified a specific target substrate of CUL4B ubiquitin ligase that may have significant implications for the pathogenesis observed in patients with mutations in CUL4B.  相似文献   

4.
Faithful DNA repair is essential to maintain genome integrity. Ultraviolet (UV) irradiation elicits both the recruitment of DNA repair factors and the deposition of histone marks such as monoubiquitylation of histone H2A at lesion sites. Here, we report how a ubiquitin E3 ligase complex specific to DNA repair is remodeled at lesion sites in the global genome nucleotide excision repair (GG-NER) pathway. Monoubiquitylation of histone H2A (H2A-ubiquitin) is catalyzed predominantly by a novel E3 ligase complex consisting of DDB2, DDB1, CUL4B, and RING1B (UV–RING1B complex) that acts early during lesion recognition. The H2A-ubiquitin binding protein ZRF1 mediates remodeling of this E3 ligase complex directly at the DNA lesion site, causing the assembly of the UV–DDB–CUL4A E3 ligase complex (DDB1–DDB2–CUL4A-RBX1). ZRF1 is an essential factor in GG-NER, and its function at damaged chromatin sites is linked to damage recognition factor XPC. Overall, the results shed light on the interplay between epigenetic and DNA repair recognition factors at DNA lesion sites.  相似文献   

5.
Tumor suppressor RASSF1A (RAS association domain family 1, isoform A) is known to play an important role in regulation of mitosis; however, little is known about how RASSF1A is regulated during the mitotic phase of the cell cycle. In the present study, we have identified Cullin-4A (CUL4A) as a novel E3 ligase for RASSF1A. Our results demonstrate that DNA damage-binding protein 1 (DDB1) functions as a substrate adaptor that directly interacts with RASSF1A and bridges RASSF1A to the CUL4A E3 ligase complex. Depletion of DDB1 also diminishes intracellular interactions between RASSF1A and CUL4A. Our results also show that RASSF1A interacts with DDB1 via a region containing amino acids 165-200, and deletion of this region abolishes RASSF1A and DDB1 interactions. We have found that CUL4A depletion results in increased levels of RASSF1A protein due to increased half-life; whereas overexpression of CUL4A and DDB1 markedly enhances RASSF1A protein ubiquitination resulting in reduced RASSF1A levels. We further show that CUL4A-mediated RASSF1A degradation occurs during mitosis, and depletion of CUL4A markedly reverses mitotic-phase-stimulated RASSF1A degradation. We also note that overexpression of CUL4A antagonizes the ability of RASSF1A to induce M-phase cell cycle arrest. Thus, our present study demonstrates that the CUL4A·DDB1 E3 complex is important for regulation of RASSF1A during mitosis, and it may contribute to inactivation of RASSF1A and promoting cell cycle progression.  相似文献   

6.
The CUL4 (cullin 4) proteins are the core components of a new class of ubiquitin E3 ligases that regulate cell cycle, DNA replication, and DNA damage response. To determine the composition of CUL4 ubiquitin E3 ligase complex, we used anti-CUL4 antibody affinity chromatography to isolate the proteins that associated with human CUL4 complexes and identified them by mass-spectrometry. A novel and conserved WD40 domain-containing protein, the human homologue of Drosophila lethal(2) denticleless protein (L2DTL), was found to associate with CUL4 and DDB1. L2DTL also interacts with replication licensing protein CDT1 in vivo. Loss of L2DTL in Drosophila S2 and human cells suppressed proteolysis of CDT1 in response to DNA damage. We further isolated the human L2DTL complexes by anti-L2DTL immuno-affinity chromatography from HeLa cells and found it associates with DDB1, components of the COP9-signalosome complex (CSN), and PCNA. We found that PCNA interacts with CDT1 and loss of PCNA suppressed CDT1 proteolysis after DNA damage. Our data also revealed that in vivo, inactivation of L2DTL causes the dissociation of DDB1 from the CUL4 complex. Our studies suggest that L2DTL and PCNA interact with CUL4/DDB1 complexes and are involved in CDT1 degradation after DNA damage.  相似文献   

7.
8.
9.
Z Wu  Y Chen  T Yang  Q Gao  M Yuan  L Ma 《PloS one》2012,7(8):e43997
The G protein-coupled receptor kinases (GRKs) phosphorylate agonist occupied G protein-coupled receptors (GPCRs) and desensitize GPCR-mediated signaling. Recent studies indicate they also function non-catalytically via interaction with other proteins. In this study, a proteomic approach was used to screen interacting proteins of GRK5 in MDA-MB-231 cells and HUVEC cells. Mass spectrometry analysis reveals several proteins in the GRK5 immunocomplex including damaged DNA-binding protein 1 (DDB1), an adaptor subunit of the CUL4-ROC1 E3 ubiquitin ligase complex. Co-immunoprecipitation experiments confirmed the association of GRK5 with DDB1-CUL4 complex, and reveal that DDB1 acts as an adapter to link GRK5 to CUL4 to form the complex. Overexpression of DDB1 promoted, whereas knockdown of DDB1 inhibited the ubiquitination of GRK5, and the degradation of GRK5 was reduced in cells deficient of DDB1. Furthermore, the depletion of DDB1 decreased Hsp90 inhibitor-induced GRK5 destabilization and UV irradiation-induced GRK5 degradation. Thus, our study identified potential GRK5 interacting proteins, and reveals the association of GRK5 with DDB1 in cell and the regulation of GRK5 level by DDB1-CUL4 ubiquitin ligase complex-dependent proteolysis pathway.  相似文献   

10.
The cullin4A-RING E3 ubiquitin ligase (CRL4) is a multisubunit protein complex, comprising cullin4A (CUL4), RING H2 finger protein (RBX1), and DNA damage-binding protein 1 (DDB1). Proteins that recruit specific targets to CRL4 for ubiquitination (ubiquitylation) bind the DDB1 adaptor protein via WD40 domains. Such CRL4 substrate recognition modules are DDB1- and CUL4-associated factors (DCAFs). Here we show that, for DCAF1, oligomerization of the protein and the CRL4 complex occurs via a short helical region (residues 845-873) N-terminal to DACF1's own WD40 domain. This sequence was previously designated as a LIS1 homology (LisH) motif. The oligomerization helix contains a stretch of four Leu residues, which appear to be essential for α-helical structure and oligomerization. In vitro reconstituted CRL4-DCAF1 complexes (CRL4(DCAF1)) form symmetric dimers as visualized by electron microscopy (EM), and dimeric CRL4(DCAF1) is a better E3 ligase for in vitro ubiquitination of the UNG2 substrate compared to a monomeric complex.  相似文献   

11.
Neuronal development requires proper migration, polarization and establishment of axons and dendrites. Growing evidence identifies the ubiquitin proteasome system (UPS) with its numerous components as an important regulator of various aspects of neuronal development. F-box proteins are interchangeable subunits of the Cullin-1 based E3 ubiquitin ligase, but only a few family members have been studied. Here, we report that the centrosomal E3 ligase FBXO31-SCF (Skp1/Cullin-1/F-box protein) regulates neuronal morphogenesis and axonal identity. In addition, we identified the polarity protein Par6c as a novel interaction partner and substrate targeted for proteasomal degradation in the control of axon but not dendrite growth. Finally, we ascribe a role for FBXO31 in dendrite growth and neuronal migration in the developing cerebellar cortex. Taken together, we uncovered the centrosomal E3 ligase FBXO31-SCF as a novel regulator of neuronal development.  相似文献   

12.
The CUL4-ROC1 E3 ligase complex regulates genome stability, replication, and cell cycle progression. A novel WD40 domain-containing protein, L2DTL, and PCNA were identified as proteins associated with CUL4/DDB1 complexes. Inactivation of CUL4A, L2DTL, PCNA, DDB1, or ROC1 induced p53 stabilization and growth arrest. L2DTL, PCNA, and DDB1/CUL4A complexes were found to physically interact with p53 tumor suppressor and its regulator MDM2/HDM2. The isolated CUL4A complexes display potent and robust polyubiquitination activity towards p53 and this activity is dependent on L2DTL, PCNA, DDB1, ROC1, and MDM2/HDM2. We also found that the interaction between p53 and CUL4 complex is regulated by DNA damage. Our data further showed that MDM2/HDM2 is rapidly proteolyzed in response to UV irradiation and this process is regulated by CUL4/DDB1 and PCNA. Our studies demonstrate that PCNA, L2DTL, and the DDB1-CUL4A complex play critical and differential roles in regulating the protein stability of p53 and MDM2/HDM2 in unstressed and stressed cells.  相似文献   

13.
14.
Hu J  McCall CM  Ohta T  Xiong Y 《Nature cell biology》2004,6(10):1003-1009
Cullins assemble a potentially large number of ubiquitin ligases by binding to the RING protein ROC1 to catalyse polyubiquitination, as well as binding to various specificity factors to recruit substrates. The Cul4A gene is amplified in human breast and liver cancers, and loss-of-function of Cul4 results in the accumulation of the replication licensing factor CDT1 in Caenorhabditis elegans embryos and ultraviolet (UV)-irradiated human cells. Here, we report that human UV-damaged DNA-binding protein DDB1 associates stoichiometrically with CUL4A in vivo, and binds to an amino-terminal region in CUL4A in a manner analogous to SKP1, SOCS and BTB binding to CUL1, CUL2 and CUL3, respectively. As with SKP1-CUL1, the DDB1-CUL4A association is negatively regulated by the cullin-associated and neddylation-dissociated protein, CAND1. Recombinant DDB1 and CDT1 bind directly to each other in vitro, and ectopically expressed DDB1 bridges CDT1 to CUL4A in vivo. Silencing DDB1 prevented UV-induced rapid CDT1 degradation in vivo and CUL4A-mediated CDT1 ubiquitination in vitro. We suggest that DDB1 targets CDT1 for ubiquitination by a CUL4A-dependent ubiquitin ligase, CDL4A(DDB1), in response to UV irradiation.  相似文献   

15.
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a type of RNA binding protein that highly expressed in a variety of tumors and plays a vital role in tumor progression. However, its post-translational regulation through ubiquitin-mediated proteolysis and the cellular mechanism responsible for its proteasomal degradation remains unclear. F-box proteins (FBPs) function as the substrate recognition subunits of SCF ubiquitin ligase complexes and directly bind to substrates. The aberrant expression or mutation of FBPs will lead to the accumulation of its substrate proteins that often involved in tumorigenesis. Here we discover FBXO16, an E3 ubiquitin ligase, to be a tumor suppressor in ovarian cancer, and patients with the relatively high expression level of FBXO16 have a better prognosis. Silencing or depleting FBXO16 significantly enhanced ovarian cancer cell proliferation, clonogenic survival, and cell invasion by activating multiple oncogenic pathways. This function requires the F-box domain of FBXO16, through which FBXO16 assembles a canonical SCF ubiquitin ligase complex that constitutively targets hnRNPL for degradation. Depletion of hnRNPL is sufficient to inactive multiple oncogenic signaling regulated by FBXO16 and prevent the malignant behavior of ovarian cancer cells caused by FBXO16 deficiency. FBXO16 interacted with the RRM3 domain of hnRNPL via its C-terminal region to trigger the proteasomal degradation of hnRNPL. Failure to degrade hnRNPL promoted ovarian cancer cell proliferation in vitro and tumor growth vivo, phenocopying the deficiency of FBXO16 in ovarian cancer.Subject terms: Ovarian cancer, Oncogenes  相似文献   

16.
Zhang Y  Feng S  Chen F  Chen H  Wang J  McCall C  Xiong Y  Deng XW 《The Plant cell》2008,20(6):1437-1455
The human DDB1-CUL4 ASSOCIATED FACTOR (DCAF) proteins have been reported to interact directly with UV-DAMAGED DNA BINDING PROTEIN1 (DDB1) through the WDxR motif in their WD40 domain and function as substrate-recognition receptors for CULLIN4-based E3 ubiquitin ligases. Here, we identified and characterized a homolog of human DCAF1/VprBP in Arabidopsis thaliana. Yeast two-hybrid analysis demonstrated the physical interaction between DCAF1 and DDB1 from Arabidopsis, which is likely mediated via the WD40 domain of DCAF1 that contains two WDxR motifs. Moreover, coimmunoprecipitation assays showed that DCAF1 associates with DDB1, RELATED TO UBIQUITIN-modified CUL4, and the COP9 signalosome in vivo but not with CULLIN-ASSOCIATED and NEDDYLATION-DISSOCIATED1, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), or the COP10-DET1-DDB1 complex, supporting the existence of a distinct Arabidopsis CUL4 E3 ubiquitin ligase, the CUL4-DDB1-DCAF1 complex. Transient expression of fluorescently tagged DCAF1, DDB1, and CUL4 in onion epidermal cells showed their colocalization in the nucleus, consistent with the notion that the CUL4-DDB1-DCAF1 complex functions as a nuclear E3 ubiquitin ligase. Genetic and phenotypic analysis of two T-DNA insertion mutants of DCAF1 showed that embryonic development of the dcaf1 homozygote is arrested at the globular stage, indicating that DCAF1 is essential for plant embryogenesis. Reducing the levels of DCAF1 leads to diverse developmental defects, implying that DCAF1 might be involved in multiple developmental pathways.  相似文献   

17.
CUL4-RING ubiquitin E3 ligases (CRL4s) were recently shown to exert their specificity through the binding of various substrate receptors, which bind the CUL4 interactor DNA damaged binding protein1 (DDB1) through a WDxR motif. In a segregation-based mutagenesis screen, we identified a WDxR motif-containing protein (WDR55) required for male and female gametogenesis and seed development. We demonstrate that WDR55 physically interacts with Arabidopsis thaliana DDB1A in planta, suggesting that WDR55 may be a novel substrate recruiter of CRL4 complexes. Examination of mutants revealed a failure in the fusion of the polar cells in embryo sac development, in addition to embryo and endosperm developmental arrest at various stages ranging from the zygote stage to the globular stage. wdr55-2 embryos suggest a defect in the transition to bilateral symmetry in the apical embryo domain, further supported by aberrant apical embryo localization of DORNROESCHEN, a direct target of the auxin response factor protein monopteros. Moreover, the auxin response pattern, as determined using the synthetic auxin-responsive reporter ProDR5:green fluorescent protein, was shifted in the basal embryo and suspensor but does not support a strong direct link to auxin response. Interestingly, the observed embryo and endosperm phenotype is reminiscent of CUL4 or DDB1A/B loss of function and thus may support a regulatory role of a putative CRL4(WDR55) E3 ligase complex.  相似文献   

18.
The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1.  相似文献   

19.
FBXO25 is one of the 69 known human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of SKP1, Rbx1, Cullin1, and F-box protein (SCF1) that are involved in targeting proteins for degradation across the ubiquitin proteasome system. However, the substrates of most SCF E3 ligases remain unknown. Here, we applied an in chip ubiquitination screen using a human protein microarray to uncover putative substrates for the FBXO25 protein. Among several novel putative targets identified, the c-fos protooncogene regulator ELK-1 was characterized as the first endogenous substrate for SCF1(FBXO25) E3 ligase. FBXO25 interacted with and mediated the ubiquitination and proteasomal degradation of ELK-1 in HEK293T cells. In addition, FBXO25 overexpression suppressed induction of two ELK-1 target genes, c-fos and egr-1, in response to phorbol 12-myristate 13-acetate. Together, our findings show that FBXO25 mediates ELK-1 degradation through the ubiquitin proteasome system and thereby plays a role in regulating the activation of ELK-1 pathway in response to mitogens.  相似文献   

20.
FBOX6 ubiquitin ligase complex is involved in the endoplasmic reticulum-associated degradation pathway by mediating the ubiquitination of glycoproteins. FBXO6 interacts with the chitobiose in unfolded N-glycoprotein, pointing glycoproteins toward E2 for ubiquitination. Although the glycoprotein-recognizing mechanism of FBXO6 is well documented, its bona fide interacting glycoproteins are largely unknown. Here we utilized a protein purification approach combined with LC-MS to systematically identify the FBXO6-interacting glycoproteins. Following identification of 39 proteins that specifically interact with FBXO6 in all three different cell lines, 293T, HeLa and Jurkat cells, we compared the protein complex organization between wild-type FBXO6 and its mutant, which fails to recognize glycoproteins. Combining these databases, 29 highly confident glycoproteins that interact with FBXO6 in an N-glycan dependent manner are identified. Our data provide valuable information for the discovery of the interacting glycoproteins of FBXO6 and also demonstrate the potential of these approaches as general platforms for the global discovery of interacting glycoproteins of other FBAs (F-box associated regions) containing F-box proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号