首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Biomolecular simulations at millisecond and longer time‐scales can provide vital insights into functional mechanisms. Because post‐simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi‐anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub‐states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth‐order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time‐scale simulations online. In particular, we present HOST4MD—a higher‐order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub‐states, and (3) identifies conformational transitions that enable the protein to access those sub‐states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time‐scale simulations. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Satoh D  Shimizu K  Nakamura S  Terada T 《FEBS letters》2006,580(14):3422-3426
Chignolin is an artificial mini-protein composed of 10 residues (GYDPETGTWG) that has been shown to cooperatively fold into a beta-hairpin structure in water. We extensively explored the conformational space of chignolin using a 180-ns multicanonical molecular dynamics (MD) simulation and analyzed its folding free-energy landscape. In the MD trajectory, we found structures that satisfy 99% of the experimental restraints and are quite close to the experimentally determined structures with C(alpha) root-mean-square-deviations of less than 0.5 Angstroms. These structures formed a large cluster in the conformational space with the largest probability of existence, agreeing well with the experiment.  相似文献   

3.
Using energy minimization and cluster analysis, we have analyzed a 1020 ps molecular dynamics trajectory of solvated bovine pancreatic trypsin inhibitor. Elucidation of conformational sub states in this way both illustrates the degree of conformational convergence in the simulation and reduces the structural data to a tractable subset. The relative movement of structures upon energy minimization was used to estimate the sizes of features on the protein potential energy surface. The structures were analyzed using their pairwise root-mean-square Cα deviations, which gave a global measure of conformational changes that would not be apparent by monitoring single degrees of freedom. At time scales of 0.1 ps, energy minimization detected sharp transitions between energy minima separated by 0.1 Å rms deviation. Larger conformational clusters containing these smaller minima and separated by 0.25 Å were seen at 1 ps time scales. Both of these small features of the conformational landscape were characterized by movements in loop regions associated with small, correlated backbone dihedral angle shifts. On a nanosecond time scale, the main features of the protein energy landscape were clusters separated by over 0.7 Å rms deviation, with only seven of these sub states visited over the 1 ns trajectory. These substates, discernible both before and after energy minimization, differ mainly in a monotonic pivot of the loop residues 11–18 over the course of the simulation. This loop contains lysine 17, which specifically binds to trypsin in the active site. The trajectory did not return to previously visited clusters, indicating that this trajectory has not been shown to have completely sampled the conformational substates available to it. Because the apparent convergence to a single region of conformation space depends on both the time scale of observation and the size of the conformational features examined, convergence must be operationally defined within the context of the simulation. © 1995 Wiley-Liss, Inc.  相似文献   

4.
A general model has been proposed for the fusion mechanisms of class I viral fusion proteins. According to this model a metastable trimer, anchored in the viral membrane through its transmembrane domain, transits to a trimeric prehairpin intermediate, anchored at its opposite end in the target membrane through its fusion peptide. A subsequent refolding event creates a trimer of hairpins (often termed a six-helix bundle) in which the previously well-separated transmembrane domain and fusion peptide (and their attached membranes) are brought together, thereby driving membrane fusion. While there is ample biochemical and structural information on the trimer-of-hairpins conformation of class I viral fusion proteins, less is known about intermediate states between native metastable trimers and the final trimer of hairpins. In this study we analyzed conformational states of the transmembrane subunit (TM), the fusion subunit, of the Env glycoprotein of the subtype A avian sarcoma and leukosis virus (ASLV-A). By analyzing forms of EnvA TM on mildly denaturing sodium dodecyl sulfate gels we identified five conformational states of EnvA TM. Following interaction of virions with a soluble form of the ASLV-A receptor at 37 degrees C, the metastable form of EnvA TM (which migrates at 37 kDa) transits to a 70-kDa and then to a 150-kDa species. Following subsequent exposure to a low pH (or an elevated temperature or the fusion promoting agent chlorpromazine), an additional set of bands at >150 kDa, and then a final band at 100 kDa, forms. Both an EnvA C-helix peptide (which inhibits virus fusion and infectivity) and the fusion-inhibitory agent lysophosphatidylcholine inhibit the formation of the >150- and 100-kDa bands. Our data are consistent with the 70- and 150-kDa bands representing precursor and fully formed prehairpin conformations of EnvA TM. Our data are also consistent with the >150-kDa bands representing higher-order oligomers of EnvA TM and with the 100-kDa band representing the fully formed six-helix bundle. In addition to resolving fusion-relevant conformational intermediates of EnvA TM, our data are compatible with a model in which the EnvA protein is activated by its receptor (at neutral pH and a temperature greater than or equal to room temperature) to form prehairpin conformations of EnvA TM, and in which subsequent exposure to a low pH is required to stabilize the final six-helix bundle, which drives a later stage of fusion.  相似文献   

5.
A major current focus of structural work on G-protein-coupled receptors (GPCRs) pertains to the investigation of their active states. However, for virtually all GPCRs, active agonist-bound intermediate states have been difficult to characterize experimentally owing to their higher conformational flexibility, and thus intrinsic instability, as compared to inactive inverse agonist-bound states. In this work, we explored possible activation pathways of the prototypic GPCR bovine rhodopsin by means of biased molecular dynamics simulations. Specifically, we used an explicit atomistic representation of the receptor and its environment, and sampled the conformational transition from the crystal structure of a photoactivated deprotonated state of rhodopsin to the low pH crystal structure of opsin in the presence of 11-trans-retinal, using adiabatic biased molecular dynamics simulations. We then reconstructed the system free-energy landscape along the predetermined transition trajectories using a path collective variable approach based on metadynamics. Our results suggest that the two experimental endpoints of rhodopsin/opsin are connected by at least two different pathways, and that the conformational transition is populated by at least four metastable states of the receptor, characterized by a different amplitude of the outward movement of transmembrane helix 6.  相似文献   

6.
Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results.  相似文献   

7.
Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond range. We sample and cluster the free energy landscape using Markov State Models (MSM) with major and minor exchange states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state that consists primarily of holo-like conformations and is a "hub" visited by most pathways between macrostates. These results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-converting conformational states and is generally applicable.  相似文献   

8.
The Escherichia coli uracil/H + symporter UraA, known as the representative nucleobase/cation symporter 2(NCS2) protein, gets involved in several crucial physiological processes for most living organisms on Earth, such as the uptake of nucleobases and transport of vitamin C. Some experiments proposed a working model to explain proton-coupling and uracil transporting process of UraA on the basis of the crystal structure of NCS2 protein, but the details of conformational changes remained unknown. Thus, in order to make clear conformational changes caused by the protonation and deprotonation process of some conserved proton-coupled residues, the molecular dynamics simulation was used to study the conformation of UraA complexes in different protonation states. The results demonstrated that the protonation of residue Glu241 and Glu290 resulted in the whole conformational transition from the inward-open to the outward-open state. It can be concluded that Glu290 was crucial in a network of hydrogen-bonds in the middle of the core domain involving another essential residue, mainly including tyr288 in TM8, Tyr342, Ser338 in TM12, and the network of hydrogen-bonds was the key to maintain the stability of conformation. Protonation of Glu290 affects the stability of network of H-bond and changed the domains TM3 TM10 TM12. Thus, Glu290 may play a vital role as a ‘proton trigger’ that affects spatial structural of amino and residues near substrate binding side leading to an outward-open conformation transition.  相似文献   

9.
Integrins are composed of noncovalently bound dimers of an alpha- and a beta-subunit. They play an important role in cell-matrix adhesion and signal transduction through the cell membrane. Signal transduction can be initiated by the binding of intracellular proteins to the integrin. Binding leads to a major conformational change. The change is passed on to the extracellular domain through the membrane. The affinity of the extracellular domain to certain ligands increases; thus at least two states exist, a low-affinity and a high-affinity state. The conformations and conformational changes of the transmembrane (TM) domain are the focus of our interest. We show by a global search of helix-helix interactions that the TM section of the family of integrins are capable of adopting a structure similar to the structure of the homodimeric TM protein Glycophorin A. For the alpha(IIb)beta(3) integrin, this structural motif represents the high-affinity state. A second conformation of the TM domain of alpha(IIb)beta(3) is identified as the low-affinity state by known mutational and nuclear magnetic resonance (NMR) studies. A transition between these two states was determined by molecular dynamics (MD) calculations. On the basis of these calculations, we propose a three-state mechanism.  相似文献   

10.
We are describing efficient dynamics simulation methods for the characterization of functional motion of biomolecules on the nanometer scale. Multivariate statistical methods are widely used to extract and enhance functional collective motions from molecular dynamics (MD) simulations. A dimension reduction in MD is often realized through a principal component analysis (PCA) or a singular value decomposition (SVD) of the trajectory. Normal mode analysis (NMA) is a related collective coordinate space approach, which involves the decomposition of the motion into vibration modes based on an elastic model. Using the myosin motor protein as an example we describe a hybrid technique termed amplified collective motions (ACM) that enhances sampling of conformational space through a combination of normal modes with atomic level MD. Unfortunately, the forced orthogonalization of modes in collective coordinate space leads to complex dependencies that are not necessarily consistent with the symmetry of biological macromolecules and assemblies. In many biological molecules, such as HIV-1 protease, reflective or rotational symmetries are present that are broken using standard orthogonal basis functions. We present a method to compute the plane of reflective symmetry or the axis of rotational symmetry from the trajectory frames. Moreover, we develop an SVD that best approximates the given trajectory while respecting the symmetry. Finally, we describe a local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms of local features. The LFA representations are low-dimensional, and provide a reduced basis set for collective motions, but unlike global collective modes they are sparsely distributed and spatially localized. This yields a more reliable assignment of essential dynamics modes across different MD time windows.  相似文献   

11.
The molecular dynamics algorithm (MD), which simulates intramolecular motions on the subnanosecond timescale, has been modified to allow the investigation of slow conformational transitions that do not necessarily occur spontaneously in MD simulations. The method is designated CONTRA MD (CONformational TRAnsitions by Molecular Dynamics with minimum biasing). The method requires the prior definition of a single conformational variable that is required to vary monotonically from an initial conformation to a final target conformation. The simulation is broken up into a series of short free MD segments, and we determine, after each segment of MD, whether or not the system has evolved toward the final conformation. Those segments that do not move the system in that direction are deleted. Those that do move it toward the final conformation are patched together sequentially to generate a single representative trajectory along the transition pathway. The CONTRA MD method is demonstrated first by application to the simultaneous C2′-endo to C3′-endo repucker and anti to syn N-glycosidic torsion transitions in 2′-deoxyadenosine and then to the large-scale bending in phenylalanine transfer RNA. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
L1 ligase (L1L) molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5′-to-3′ phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA world hypothesis. L1L crystal structure captures two distinct conformations that differ by a reorientation of one of the stems by around 80 Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a three‐state/two‐step process. The first step involves a large-amplitude swing that reorients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network.  相似文献   

13.
Adenylate kinase is a monomeric phosphotransferase with important biological function in regulating concentration of adenosine triphosphate (ATP) in cells, by transferring the terminal phosphate group from ATP to adenosine monophosphate (AMP) and forming two adenosine diphosphate (ADP) molecules. During this reaction, the kinase may undergo a large conformational transition, forming different states with its substrates. Although many structures of the protein are available, atomic details of the whole process remain unclear. In this article, we use both conventional molecular dynamics (MD) simulation and an enhanced sampling technique called parallel cascade selection MD simulation to explore different conformational states of the Escherichia coli adenylate kinase. Based on the simulation results, we propose a possible entrance/release order of substrates during the catalytic cycle. The substrate-free protein prefers an open conformation, but changes to a closed state once ATP·Mg enters into its binding pocket first and then AMP does. After the reaction of ATP transferring the terminal phosphate group to AMP, ADP·Mg and ADP are released sequentially, and finally the whole catalyze cycle is completed. Detailed contact and distance analysis reveals that the entrance/release order of substrates may be largely controlled by electrostatic interactions between the protein and the substrates.  相似文献   

14.
Molecular dynamics simulation (MD) constitutes an alternative to time-consuming experiments for studying conformational changes. We apply MD on a redox system where experimental information exists for the fully oxidized and fully reduced states: tetraheme cytochrome c3. Instead of doing one simulation for each state, we apply 10 4-ns replicas for both states, which provides robust statistics to characterize the redox changes. Besides these long simulations, we perform 120 short ones (50 ps), where an equilibrated oxidized state is perturbed to a reduced state. This allows the application of a nonequilibrium method, the subtraction technique, which makes it possible to characterize the different timescales of conformational changes. Reduction induces conformational changes in the N-terminus and on the loops spanning residues 36-42 and 88-93, which correlate very well with experiments, demonstrating the applicability of this methodology. We also analyze the effect of reduction on hydrogen bonds, solvent accessible surface and bound water, the changes being found to involve the hemes and propionate groups. Redox-induced protonation is also investigated, by protonating the propionates D from hemes I and IV. Although this change in the former does not have major conformational consequences, it induces in the latter conformational changes beyond the ones obtained with reduction.  相似文献   

15.
Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions.  相似文献   

16.
Receptors are functional membrane proteins on the cell surface that recognize external signals and trigger biological responses by generating intracellular signals. Due to prolonged exposure to external signals, receptors are often desensitized and no longer produce intracellular signals. This simple control mechanism may work without negative-feedback regulation from another molecule if the active state of a receptor reflects a transient metastable molecular structure. A theoretical framework is developed to identify a metastable state associated with a conformational transition of protein molecules, in which a transient state can be observed somewhat above the equilibrium transition point. The conducting state of the acetylcholine receptor may thus represent a metastable state associated with a conformational transition from the resting state to the desensitized state. Similarly, the conducting state of the voltage-sensitive sodium channel may represent a metastable state associated with a conformational transition from the resting state to the refractory state. The rates of appearance and disappearance of the transient state, as well as the equilibrium ratio of the two preexisting states, can be estimated from the free energy of protein structure. The appearance of the transient state is generally a multirelaxation process and may show a time lag, while the disappearance is a slower single-relaxation process.  相似文献   

17.
The conformational property of oligosaccharide GT1B in aqueous environment was studied by molecular dynamics (MD) simulation using all-atom model. Based on the trajectory analysis, three prominent conformational models were proposed for GT1B. Direct and water-mediated hydrogen bonding interactions stabilize these structures. The molecular modeling and 15 ns MD simulation of the Botulinum Neuro Toxin/B (BoNT/B) - GT1B complex revealed that BoNT/B can accommodate the GT1B in the single binding mode. Least mobility was seen for oligo-GT1B in the binding pocket. The bound conformation of GT1B obtained from the MD simulation of the BoNT/B-GT1B complex bear a close conformational similarity with the crystal structure of BoNT/A-GT1B complex. The mobility noticed for Arg 1268 in the dynamics was accounted for its favorable interaction with terminal NeuNAc. The internal NeuNAc1 tends to form 10 hydrogen bonds with BoNT/B, hence specifying this particular site as a crucial space for the therapeutic design that can restrict the pathogenic activity of BoNT/B.  相似文献   

18.
It has long been presumed that activation of the apoptosis-initiating Death Receptor 5, as well as other structurally homologous members of the TNF-receptor superfamily, relies on ligand-stabilized trimerization of noninteracting receptor monomers. We and others have proposed an alternate model in which the TNF-receptor dimer—sitting at the vertices of a large supramolecular receptor network of ligand-bound receptor trimers—undergoes a closed-to-open transition, propagated through a scissorslike conformational change in a tightly bundled transmembrane (TM) domain dimer. Here we have combined electron paramagnetic resonance spectroscopy and potential-of-mean force calculations on the isolated TM domain of the long isoform of DR5. The experiments and calculations both independently validate that the opening transition is intrinsic to the physical character of the TM domain dimer, with a significant energy barrier separating the open and closed states.  相似文献   

19.
It has been suggested that the alanine-based peptide with sequence Ac-XX-[A](7)-OO-NH(2), termed XAO where X denotes diaminobutyric acid and O denotes ornithine, exists in a predominantly polyproline-helix (P(II)) conformation in aqueous solution. In our recent work, we demonstrated that this "polyproline conformation" should be regarded as a set of local conformational states rather than as the overall conformation of the molecule. In this work, we present further evidence to support this statement. Differential scanning calorimetry measurements showed only a very small peak in the heat capacity of an aqueous solution of XAO at 57 degrees C, whereas the suggested transition to the P(II) structure should occur at approximately 30 degrees C. We also demonstrate that the temperature dependence of the (3)J(HNHalpha) coupling constants of the alanine residues can be explained qualitatively in terms of Boltzmann averaging over all local conformational states; therefore, this temperature dependence proves that a conformational transition does not occur. Canonical MD simulations with the solvent represented by the generalized Born model, and with time-averaged NMR-derived restraints, demonstrate the presence of an ensemble of structures with a substantial amount of local P(II) conformational states but not with an overall P(II) conformation.  相似文献   

20.
The N-terminal receiver domain of NtrC is the molecular switch in the two-component signal transduction. It is the first protein where structures of both the active (phosphyroylated) and inactive (unphosphyroylated) states are determined experimentally. Phosphorylation of the NtrC at the active site induces large structural change. NMR experiments suggested that the wild type unphosphorylated NtrC adopts both the active and the inactive conformations and the phosphorylation stabilizes the active conformations. We applied free (unconstrained) molecular dynamic (MD) simulation to examine the intrinsic flexibilities and stabilities of the NtrC receiver domain in both the active and inactive conformations. Molecular dynamic simulations showed that the inactive state of NtrC receiver domain is more flexible than the active state. There were large movements in helix 4 and loop beta3-alpha3 which coincide with major structural differences between the inactive and active states. We observed large root-mean-square deviations from the initial starting structure and the large root-mean-square fluctuations during MD simulation for the inactive state. We then investigated the activation pathway with Targeted MD simulation. We show that the intrinsic flexibility in the loop beta3-alpha3 plays an important role in triggering the conformational change. Phosphorylation at the active site may serve to stabilize the conformational change. These results together suggest that the unphosphorylated NtrC receiver domain could be involved in a conformational equilibrium between two different states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号