首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10?5) compared to polB (19 × 10?5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.  相似文献   

2.
Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families.  相似文献   

3.
Base excision repair (BER) is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol β) is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol λ), was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases λ and β in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol β and pol λ. Neutral red viability assays demonstrated that pol λ and pol β double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol λ to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol λ and pol β interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.  相似文献   

4.
5.
Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understand- ing of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and devel- opment, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.  相似文献   

6.
We examined the effects of mutations in the Saccharomyces cerevisiae RAD27 (encoding a nuclease involved in the processing of Okazaki fragments) and POL3 (encoding DNA polymerase δ) genes on the stability of a minisatellite sequence (20-bp repeats) and microsatellites (1- to 8-bp repeat units). Both the rad27 and pol3-t mutations destabilized both classes of repeats, although the types of tract alterations observed in the two mutant strains were different. The tract alterations observed in rad27 strains were primarily additions, and those observed in pol3-t strains were primarily deletions. Measurements of the rates of repetitive tract alterations in strains with both rad27 and pol3-t indicated that the stimulation of microsatellite instability by rad27 was reduced by the effects of the pol3-t mutation. We also found that rad27 and pol3-01 (an allele carrying a mutation in the “proofreading” exonuclease domain of DNA polymerase δ) mutations were synthetically lethal.All eukaryotic genomes thus far examined contain many simple repetitive DNA sequences, tracts of DNA with one or a small number of bases repeated multiple times (48). These repetitive regions can be classified as microsatellites (small repeat units in tandem arrays 10 to 60 bp in length) and minisatellites (larger repeat units in tandem arrays several hundred base pairs to several kilobase pairs in length). In this paper, arrays with repeat units 14 bp or less will be considered microsatellites and arrays with longer repeat units will be considered minisatellites.Previous studies show that simple repetitive sequences are unstable relative to “normal” DNA sequences, frequently undergoing additions or deletions of repeat units, in Escherichia coli (24), Saccharomyces cerevisiae (12), and mammals (59). This mutability has two important consequences. First, it results in polymorphic loci that are useful in genetic mapping and forensic studies (15, 59). Second, although these repetitive tracts are usually located outside of coding sequences, alterations in the lengths of microsatellites or minisatellites located within coding sequences can produce frameshift mutations or novel protein variants (20, 22, 26).From studies of the effects of various mutations on microsatellite stability in yeast and E. coli (40) and the analysis of mutational changes caused by DNA polymerase in vitro (21), it is likely that most alterations reflect DNA polymerase slippage events (47). These events involve the transient dissociation of the primer and template strands during the replication of a microsatellite (Fig. (Fig.1).1). If the strands reassociate to yield an unpaired repeat on the primer strand, the net result is an addition of repeats (following a second round of DNA replication). Unpaired repeats on the template strand would result in a deletion by the same mechanism. Open in a separate windowFIG. 1“Classical” model for the generation of microsatellite alterations by DNA polymerase slippage. Two single strands of a replicating DNA molecule are shown, with each repeat unit indicated by a rectangle. Arrows indicate the 3′ ends of the strand, and the top and bottom strands represent the elongating primer strand and the template strand, respectively. Step 1, the primer and template strand dissociate; step 2, the primer and template strands reassociate in a misaligned configuration, resulting in an unpaired repeat on either the template strand (left side) or primer strand (right side); step 3, DNA synthesis is completed. If the unpaired repeats are not excised by the DNA mismatch repair system, after the next round of DNA synthesis one DNA molecule will be shortened by one repeat (left side) or lengthened by one repeat (right side).A number of mutations have been shown to elevate microsatellite instability. In E. coli (24, 46), yeast (44, 45), and mammalian cells (27), mutations in genes affecting DNA mismatch repair dramatically elevate the instability of a dinucleotide microsatellite. The most likely explanation of this result is that the DNA mismatches (unpaired repeats) resulting from DNA polymerase slippage events are efficiently removed from the newly synthesized strand by the DNA mismatch repair system. Thus, in the absence of mismatch repair, tract instability is elevated. From genetic studies, it has been found that mismatch repair in yeast efficiently corrects DNA mismatches involving 1- to 14-base loops (the size of the repeat units in microsatellites) but fails to correct mismatches involving loops larger than 16 bases (the size of the repeat units in minisatellites) (3, 41, 53). An inefficient mechanism, not involving the classical DNA mismatch repair system, is capable of correcting large DNA loops formed during meiotic recombination (19).In addition to mutations affecting DNA mismatch repair, some mutations affecting DNA replication in yeast destabilize microsatellites. Yeast strains bearing a null mutation in the RAD27 (RTH1) gene have high levels of instability of the dinucleotide poly(GT) and the trinucleotide CAG, specifically elevating single-repeat insertions (18, 39). RAD27 encodes the homolog of the mammalian FEN-1 protein, a 5′-to-3′ exonuclease (10, 11, 33). This nuclease activity is required for removing the terminal ribonucleotide residue from the 5′ end of the Okazaki fragment (9, 14, 35, 54, 55, 57); this step is necessary for the two adjoining fragments to be ligated together. FEN-1 appears to be active as either an exonuclease in the presence of a single-stranded gap upstream of the 5′ terminus or an endonuclease on a 5′ flap structure (13, 34). Since yeast strains that contain a null mutation in RAD27 grow poorly but are viable (38, 43), it is likely that less efficient nuclease activities that are also capable of 5′ Okazaki fragment processing are present in yeast. In addition to destabilizing dinucleotide microsatellites, rad27 strains have high levels of spontaneous mitotic recombination, elevated rates of forward mutation, and increased sensitivity to the alkylating agent methyl methanesulfonate (MMS) (18, 38, 43). In contrast to the mutations normally seen in mismatch repair mutants, i.e., point mutations or small frameshifts, the types of mutations observed in the absence of Rad27p are duplications of sequences flanked by short direct repeats (4 to 7 bp in length) (49). These duplications were not affected by the DNA mismatch repair system.The same class of sequences that are duplicated in the rad27 strains show an elevated rate (up to 1,000-fold) of deletion in strains containing a temperature-sensitive allele (pol3-t) of the yeast gene encoding DNA polymerase δ (52, 53). This mutant (initially named tex1) was isolated in a strain that exhibited an increased excision rate of a bacterial transposon with long terminal repeats inserted within a yeast gene (7). The pol3-t allele, which encodes a mutation (Gly641 to Ala641) (51) located near the putative nucleotide binding and active-site domains of the enzyme (58), is thought to diminish the rate of lagging-strand synthesis resulting in long stretches of single-stranded DNA on the lagging-strand template (8). This single-stranded DNA may have the potential to form intrastrand base-paired structures, creating interactions between short direct repeats. These interactions would result in an increased frequency of deletions caused by DNA polymerase slippage.Since rad27 and pol3-t mutations elevate the rates of duplications and deletions associated with short separated repeats in nonrepetitive DNA sequences, Kunkel et al. (22) suggested that these mutations could also destabilize minisatellites. In this paper, we examine the effects of rad27 and pol3-t mutations on the stability of simple repeats in which the repeat unit length varies between 1 and 20 bp. Our results show that both mutations destabilize both microsatellites and minisatellites, but that the mechanisms involved in the destabilization are different for the two mutations.  相似文献   

7.
8.
The role of proline has recently been a sub-ject of intensive research. This stems from:(1) the marked accumulation of free prolinein plants undergoing water stress, salinity, lowtemperature, air pollutants, etc. and possibleroles of accumulated proline in plants (Stewart  相似文献   

9.
10.
The role played by the Y-family DNA polymerases YqjH and YqjW in protecting sporulating cells of Bacillus subtilis from DNA damage was determined. The absence of either yqjH and/or yqjW not only reduced sporulation efficiency but also sensitized the sporulating cells to hydrogen peroxide, tert-butylhydroperoxide (t-BHP), mitomycin-C (M-C), and UV-C radiation. Moreover, these DNA-damaging agents increased the mutation frequency of wild-type sporulating cells to 4-azaleucine, but the production of mutants was YqjH- and YqjW-dependent. In conclusion, the results presented here indicate that YqjH/YqjW-dependent-translesion synthesis (TLS) operates in sporulating B. subtilis cells and contributes in processing spontaneous and artificially induced genetic damage, which is apparently required for an efficient sporulation process.  相似文献   

11.
12.
13.
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.  相似文献   

14.
Exponentially growing recA mutant cells of Escherichia coli display pronounced DNA degradation that starts at the sites of DNA damage and depends on RecBCD nuclease (ExoV) activity. As a consequence of this “reckless” DNA degradation, populations of recA mutants contain a large proportion of anucleate cells. We have found that both DNA degradation and anucleate-cell production are efficiently suppressed by mutations in the xonA (sbcB) and sbcD genes. The suppressive effects of these mutations were observed in normally grown, as well as in UV-irradiated, recA cells. The products of the xonA and sbcD genes are known to code for the ExoI and SbcCD nucleases, respectively. Since both xonA and sbcD mutations are required for strong suppression of DNA degradation while individual mutations have only a weak suppressive effect, we infer that ExoI and SbcCD play partially redundant roles in regulating DNA degradation in recA cells. We suggest that their roles might be in processing (blunting) DNA ends, thereby producing suitable substrates for RecBCD binding.The RecA protein plays a central role in homologous recombination and recombinational DNA repair in Escherichia coli, as well as in other bacterial species. It catalyzes the key stages of the recombination process—homologous pairing and DNA strand exchange. Cells carrying null mutations in the recA gene are completely deficient for homologous recombination and are extremely sensitive to DNA-damaging agents (for a review, see references 21, 24, and 25). Populations of recA null mutants contain a large proportion (50 to 60%) of nonviable cells, reflecting the inability of these mutants to repair spontaneously occurring DNA damage (31). Also, exponentially growing recA cells display pronounced spontaneous DNA degradation that presumably starts at the sites of DNA damage and that depends on RecBCD nuclease (ExoV) activity (5, 48). This phenotype of recA cells is aggravated after DNA-damaging treatment, such as UV irradiation (48).According to the present data, the majority of RecA-catalyzed DNA transactions in E. coli start with binding of the RecA protein onto single-stranded DNA (ssDNA) substrates. This binding is mediated by the RecBCD and/or RecFOR protein, which helps RecA to overcome hindrance imposed by the SSB protein during competition for the DNA substrate. The RecBCD and RecFOR proteins begin RecA polymerization on ssDNA, giving rise to a nucleoprotein filament that is indispensable for further recombination reactions (3, 33; reviewed in reference 44).The RecBCD enzyme is crucial for initiation of recombinational processes at double-stranded DNA (dsDNA) ends (or breaks [DSBs]) in wild-type E. coli (a set of reactions known as the RecBCD pathway) (9, 43, 44). Upon recognizing a blunt or nearly blunt dsDNA end and binding to it, RecBCD acts as a combination of powerful helicase and nuclease, thus unwinding and simultaneously degrading both strands of the DNA duplex. After encountering a specific octanucleotide sequence designated Chi, the strong 3′-5′ nuclease activity of the enzyme is attenuated and a weaker 5′-3′ nuclease activity is upregulated (1). This Chi-dependent modification allows RecBCD to create a long 3′ ssDNA tail and to direct the loading of RecA protein onto it (2, 3). In vivo data suggest that this transition of RecBCD from a nuclease to a recombinase mode of action requires the presence of the RecA protein, suggesting that the two proteins might interact (27).In wild-type E. coli cells, the RecFOR protein complex works predominantly on DNA gaps, which may arise in chromosomes due to replication forks passing over the noncoding lesions (e.g., UV-induced pyrimidine dimers) or may be present in replication forks stalled at different obstacles in DNA (44). On the other hand, the RecFOR complex has an important role in recBC sbcBC(D) mutant cells, replacing the RecA-loading activity of RecBCD during recombination reactions starting from dsDNA ends. Recombination reactions mediated by RecFOR proteins are termed the RecF (or RecFOR) pathway (44).Cells mutated in the recB and/or recC gene exhibit strong deficiency in conjugational and transductional recombination, as well as in the repair of DSBs (8, 21). These defects can be rectified by extragenic sbcB and sbcC(D) suppressor mutations that inactivate two nucleases, thus enabling full efficiency of the RecF pathway on dsDNA ends (21, 44). The sbcB gene (also designated xonA) encodes exonuclease I (ExoI), the enzyme that digests ssDNA in the 3′-5′ direction (23). The sbcC and sbcD genes encode subunits of the SbcCD nuclease, which acts both as an endonuclease that cleaves hairpin structures and as an exonuclease that degrades linear dsDNA molecules (10, 11). Inactivation of either of the two subunits leads to the loss of SbcCD enzyme activity (18).The exact mechanism of activation of the RecF pathway by sbc mutations is not completely understood. A plausible explanation is that inactivation of ExoI and SbcCD nucleases is necessary to prevent the degradation of recombinogenic 3′ DNA ends created in a RecBCD-independent manner (8, 23, 38, 45, 46). It was recently shown that the sbcB15 mutant allele (encoding a protein without nucleolytic activity) (37) is a better suppressor of the RecBCD phenotype than an sbcB deletion (50), suggesting that some nonnucleolytic activity of ExoI may also contribute to the efficiency of the RecF pathway (46, 50).ExoI and SbcCD are usually viewed as enzymes with inhibitory roles in recombination due to their deleterious actions on the RecF pathway. However, some results suggest that these enzymes could also have stimulatory roles in recombination reactions proceeding on the RecBCD pathway. Genetic experiments with UV-irradiated E. coli cells indicated that ExoI and SbcCD might be involved in blunting radiation-induced DNA ends prior to RecBC(D) action (38, 45, 46). Such a role of ExoI and SbcCD seems to be particularly critical in recD recF mutants, in which the majority of DSB repair depends on the RecBC enzyme (38). It was also suggested that the blunting roles of the two nucleases may be required during conjugational recombination (16, 46).In this work, we studied the effects of sbcB (xonA) and sbcD mutations on DNA degradation occurring spontaneously in exponentially growing recA mutant cells, as well as on DNA degradation induced in recA mutants by UV irradiation. We have demonstrated that in both cases DNA degradation is strongly reduced in recA mutants that carry in addition a combination of xonA and sbcD null mutations. The results described in this paper suggest that ExoI and SbcCD play partially redundant roles in regulating DNA degradation in recA cells.  相似文献   

15.
ABSTRACT

Proteins of the metallo-β-lactamase family with either demonstrated or predicted nuclease activity have been identified in a number of organisms ranging from bacteria to humans and has been shown to be important constituents of cellular metabolism. Nucleases of this family are believed to utilize a zinc-dependent mechanism in catalysis and function as 5′ to 3′ exonucleases and or endonucleases in such processes as 3′ end processing of RNA precursors, DNA repair, V(D)J recombination, and telomere maintenance. Examples of metallo-β-lactamase nucleases include CPSF-73, a known component of the cleavage/polyadenylation machinery, which functions as the endonuclease in 3′ end formation of both polyadenylated and histone mRNAs, and Artemis that opens DNA hairpins during V(D)J recombination. Mutations in two metallo-β-lactamase nucleases have been implicated in human diseases: tRNase Z required for 3′ processing of tRNA precursors has been linked to the familial form of prostate cancer, whereas inactivation of Artemis causes severe combined immunodeficiency (SCID). There is also a group of as yet uncharacterized proteins of this family in bacteria and archaea that based on sequence similarity to CPSF-73 are predicted to function as nucleases in RNA metabolism. This article reviews the cellular roles of nucleases of the metallo-β-lactamase family and the recent advances in studying these proteins.  相似文献   

16.
Abstract

A method was developed for synthesis of the four stereoisomeric enantiomerically pure 5′-nor carbocyclic nucleosides 4b, ent-4b, 10 and ent-10 starting from the common enantiomerically pure allylic monoacetate 1. Nucleoside analogues were converted to the corresponding triphosphate derivatives 6, ent-6, 12, and ent-12. The substrate properties of the latters towards different DNA polymerases were evaluated.  相似文献   

17.
The structural gene for DNA polymerase I of Rhizobium leguminosarum was determined. The rhizobium DNA polymerase I consists of 1016 amino acid residues with a calculated molecular weight of 111,491 Dalton. The amino acid sequence comparison with E. coli DNA polymerase I, Thermus aquaticus DNA polymerase I, and Rickettsia prowazekii DNA polymerase I showed that, although 5′-nuclease and DNA polymerase domains are highly conserved, 3′ to 5′ exonuclease domains are much less conserved. While both R. leguminosarum and R. prowazekii belong to the alpha subdivision of the Proteobacteria on the basis of 16S ribosomal RNA phylogeny, the primary structure of the DNA polymerase I is quite different; the rhizobium DNA polymerase I has 3′ to 5′ proofreading exonuclease, but the rickettsia DNA polymerase I does not. Received: 15 December 1998 / Accepted: 2 February 1999  相似文献   

18.
19.
Hayes  P. K.  Whitaker  T. M.  Fogg  G. E. 《Polar Biology》1984,3(3):153-165
Summary The distribution of phytoplankton along transects amounting to about 10,000 nautical miles in the sector of the Southern Ocean between 20° and 70°W was determined during the austral summer of 1978/79. Chlorophyll a concentration was monitored by the continuous measurement of in vivo fluorescence (IVF). Surface samples were collected for the determination of temperature, salinity, chlorophyll a concentration, carbon fixation rate and species of the phytoplankton. Phytoplankton distribution was found to be extremely patchy both locally and regionally. High phytoplankton concentrations were often associated with either hydrographic features, such as upwelling or the presence of sea-ice, or with bathymetric features, such as shelf breaks, submarine mountain ranges or islands. Enrichment experiments, in which the effects of various nutrient additions on the rate of 14C fixation by the natural phytoplankton were compared, and bioassay experiments, in which the growth of Thalassiosira pseudonana (Hustedt) Hasle and Heimdal in enriched water samples was measured, were carried out using water samples collected at various stations throughout the study area. Although these techniques were effective in demonstrating nutrient limitation elsewhere, the results suggest that availability of nitrate, phosphate, silicate, trace metals or vitamins exerts no primary control over phytoplankton abundance south of the Polar Front.  相似文献   

20.
IκB kinase ε(IKKε) is a non-canonical IκB kinase that is extensively studied in the context of innate immune response. Recently, significant progress has been made in understanding the role of IKKεin interferon(IFN) signaling. In addition to its roles in innate immunity, recent studies also demonstrate that IKKε is a key regulator of the adaptive immune response. Specifically, IKKεfunctions as a negative feedback kinase to curtail CD8 T cell response, implying that it can be a potential therapeutic target to boost antiviral and antitumor T cell immunity. In this review, we highlight the roles of IKKε in regulating IFN signaling and T cell immunity, and discuss a few imminent questions that remain to be answered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号