首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During ricin intoxication in mammalian cells, ricin''s enzymatic (RTA) and binding (RTB) subunits disassociate in the endoplasmic reticulum. RTA is then translocated into the cytoplasm where, by virtue of its ability to depurinate a conserved residue within the sarcin–ricin loop (SRL) of 28S rRNA, it functions as a ribosome-inactivating protein. It has been proposed that recruitment of RTA to the SRL is facilitated by ribosomal P-stalk proteins, whose C-terminal domains interact with a cavity on RTA normally masked by RTB; however, evidence that this interaction is critical for RTA activity within cells is lacking. Here, we characterized a collection of single-domain antibodies (VHHs) whose epitopes overlap with the P-stalk binding pocket on RTA. The crystal structures of three such VHHs (V9E1, V9F9, and V9B2) in complex with RTA revealed not only occlusion of the ribosomal P-stalk binding pocket but also structural mimicry of C-terminal domain peptides by complementarity-determining region 3. In vitro assays confirmed that these VHHs block RTA–P-stalk peptide interactions and protect ribosomes from depurination. Moreover, when expressed as “intrabodies,” these VHHs rendered cells resistant to ricin intoxication. One VHH (V9F6), whose epitope was structurally determined to be immediately adjacent to the P-stalk binding pocket, was unable to neutralize ricin within cells or protect ribosomes from RTA in vitro. These findings are consistent with the recruitment of RTA to the SRL by ribosomal P-stalk proteins as a requisite event in ricin-induced ribosome inactivation.  相似文献   

2.
Ricin belongs to the type II ribosome-inactivating proteins that depurinate the universally conserved α-sarcin loop of rRNA. The RNA N-glycosidase activity of ricin also largely depends on the ribosomal proteins that play an important role during the process of rRNA depurination. Therefore, the study of the interaction between ricin and the ribosomal elements will be better to understand the catalysis mechanism of ricin. The antibody 6C2 is a mouse monoclonal antibody exhibiting unusually potent neutralizing ability against ricin, but the neutralization mechanism remains unknown. Here, we report the 2.8 Å crystal structure of 6C2 Fab in complex with the A-chain of ricin (RTA), which reveals an extensive antigen-antibody interface that contains both hydrogen bonds and van der Waals contacts. The complementarity-determining region loops H1, H2, H3, and L3 form a pocket to accommodate the epitope on the RTA (residues Asp96–Thr116). ELISA results show that Gln98, Glu99, Glu102, and Thr105 (RTA) are the key residues that play an important role in recognizing 6C2. With the perturbation of the 6C2 Fab-RTA interface, 6C2 loses its neutralization ability, measured based on the inhibition of protein synthesis in a cell-free system. Finally, we propose that the neutralization mechanism of 6C2 against ricin is that the binding of 6C2 hinders the interaction between RTA and the ribosome and the surface plasmon resonance and pulldown results confirm our hypothesis. In short, our data explain the neutralization mechanism of mAb 6C2 against ricin and provide a structural basis for the development of improved antibody drugs with better specificity and higher affinity.  相似文献   

3.
It was shown that agents inducing phagocytosis (zymosan, lectins) cause changes in the number of receptors responsible for fast neutrophil reaction (chemotaxis or respiratory burst) or inhibit the binding of the agonist to its receptor. Among lectins are ribosome-inactivating proteins of type II ricin and agglutinin ricin, which penetrate the cell by binding to mannose and galactose receptors. It was shown that ribosome-inactivating proteins of type II can exhibit the properties of the antagonist of the receptor N-formylmethionylleucylphenylalanine. Ricin is more effective in modulating the respiratory burst induced by the chemotactic peptide than agglutinin ricin. The modulating effect of ribosome-inactivating proteins of type II on neutrophils is likely to be mediated by their interaction with galactose rather than mannose receptors. Presumably, the affinity of ribosome-inactivating proteins to galactose receptors increases with increasing amount of saccharides bound to the protein molecule. The modulating effect of ribosome-inactivating proteins of type II on the respiratory burst of neutrophils induced the chemotactic peptide is due to the structural peculiarities of these proteins.  相似文献   

4.
Day PJ  Pinheiro TJ  Roberts LM  Lord JM 《Biochemistry》2002,41(8):2836-2843
Ricin is a heterodimeric protein toxin in which a catalytic polypeptide (the A-chain or RTA) is linked by a disulfide bond to a cell-binding polypeptide (the B-chain or RTB). During cell entry, ricin undergoes retrograde vesicular transport to reach the endoplasmic reticulum (ER) lumen, from where RTA translocates into the cytosol, probably by masquerading as a substrate for the ER-associated protein degradation (ERAD) pathway. In partitioning studies in Triton X-114 solution, RTA is predominantly found in the detergent phase, whereas ricin holotoxin, native RTB, and several single-chain ribosome-inactivating proteins (RIPs) are in the aqueous phase. Fluorescence spectroscopy and far-UV circular dichroism (CD) demonstrated significant structural changes in RTA as a result of its interaction with liposomes containing negatively charged phospholipid (POPG). These lipid-induced structural changes markedly increased the trypsin sensitivity of RTA and, on the basis of the protein fluorescence determinations, abolished its ability to bind to adenine, the product resulting from RTA-catalyzed depurination of 28S ribosomal RNA. RTA also released trapped calcein from POPG vesicles, indicating that it destabilized the lipid bilayer. We speculate that membrane-induced partial unfolding of RTA during cell entry may facilitate its recognition as an ERAD substrate.  相似文献   

5.
Ribosome inactivating proteins (RIPs) like ricin, pokeweed antiviral protein (PAP) and Shiga‐like toxins 1 and 2 (Stx1 and Stx2) share the same substrate, the α‐sarcin/ricin loop, but differ in their specificities towards prokaryotic and eukaryotic ribosomes. Ricin depurinates the eukaryotic ribosomes more efficiently than the prokaryotic ribosomes, while PAP can depurinate both types of ribosomes. Accumulating evidence suggests that different docking sites on the ribosome might be used by different RIPs, providing a basis for understanding the mechanism underlying their kingdom specificity. Our previous results demonstrated that PAP binds to the ribosomal protein L3 to depurinate the α‐sarcin/ricin loop and binding of PAP to L3 was critical for its cytotoxicity. Here, we used surface plasmon resonance to demonstrate that ricin toxin A chain (RTA) binds to the P1 and P2 proteins of the ribosomal stalk in Saccharomyces cerevisiae. Ribosomes from the P protein mutants were depurinated less than the wild‐type ribosomes when treated with RTA in vitro. Ribosome depurination was reduced when RTA was expressed in the ΔP1 and ΔP2 mutants in vivo and these mutants were more resistant to the cytotoxicity of RTA than the wild‐type cells. We further show that while RTA, Stx1 and Stx2 have similar requirements for ribosome depurination, PAP has different requirements, providing evidence that the interaction of RIPs with different ribosomal proteins is responsible for their ribosome specificity.  相似文献   

6.
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes.  相似文献   

7.
Ricin is a select agent toxin and a member of the RNA N-glycosidase family of medically important plant and bacterial ribosome-inactivating proteins. In this study, we determined X-ray crystal structures of the enzymatic subunit of ricin (RTA) in complex with the antigen binding domains (VHH) of five unique single-chain monoclonal antibodies that differ in their respective toxin-neutralizing activities. None of the VHHs made direct contact with residues involved in RTA's RNA N-glycosidase activity or induced notable allosteric changes in the toxin's subunit. Rather, the five VHHs had overlapping structural epitopes on the surface of the toxin and differed in the degree to which they made contact with prominent structural elements in two folding domains of the RTA. In general, RTA interactions were influenced most by the VHH CDR3 (CDR, complementarity-determining region) elements, with the most potent neutralizing antibody having the shortest and most conformationally constrained CDR3. These structures provide unique insights into the mechanisms underlying toxin neutralization and provide critically important information required for the rational design of ricin toxin subunit vaccines.  相似文献   

8.
蓖麻毒蛋白研究及应用进展(综述)   总被引:9,自引:0,他引:9  
蓖麻毒蛋白(ricin)是一种核糖体失活蛋白,它由分子量分别为32KD和34KD的A、B两条链组成,具有很强的细胞毒性。本文综述蓖麻毒蛋白的结构和物理性质、毒性作用机理、制备及在医疗和生物农药方面的应用前景。  相似文献   

9.
Ribosome inactivating proteins (RIPs) depurinate a universally conserved adenine in the α-sarcin/ricin loop (SRL) and inhibit protein synthesis at the translation elongation step. We previously showed that ribosomal stalk is required for depurination of the SRL by ricin toxin A chain (RTA). The interaction between RTA and ribosomes was characterized by a two-step binding model, where the stalk structure could be considered as an important interacting element. Here, using purified yeast ribosomal stalk complexes assembled in vivo, we show a direct interaction between RTA and the isolated stalk complex. Detailed kinetic analysis of these interactions in real time using surface plasmon resonance (SPR) indicated that there is only one type of interaction between RTA and the ribosomal stalk, which represents one of the two binding steps of the interaction with ribosomes. Interactions of RTA with the isolated stalk were relatively insensitive to salt, indicating that nonelectrostatic interactions were dominant. We compared the interaction of RTA with the full pentameric stalk complex containing two pairs of P1/P2 proteins with its interaction with the trimeric stalk complexes containing only one pair of P1/P2 and found that the rate of association of RTA with the pentamer was higher than with either trimer. These results demonstrate that the stalk is the main landing platform for RTA on the ribosome and that pentameric organization of the stalk accelerates recruitment of RTA to the ribosome for depurination. Our results suggest that multiple copies of the stalk proteins might also increase the scavenging ability of the ribosome for the translational GTPases.  相似文献   

10.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

11.
Ricin toxin kills mammalian cells with notorious efficiency. The toxin’s B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin’s A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin’s individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA’s F-G loop (mode 1), RTB’s subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin’s cytotoxic pathway.  相似文献   

12.
Immunotoxins (ITs) containing plant or bacterial toxins have a dose-limiting toxicity of vascular leak syndrome (VLS) in humans. The active A chain of ricin toxin (RTA), other toxins, ribosome-inactivating proteins, and the VLS-inducing cytokine IL-2 contain the conserved sequence motif (x)D(y) where x = L, I, G, or V and y = V, L, or S. RTA-derived LDV-containing peptides attached to a monoclonal antibody, RFB4, induce endothelial cell (EC) damage in vitro and vascular leak in two animal models in vivo. We have now investigated the mechanism(s) by which this occurs and have found that (1) the exposed D75 in the LDV sequence in RTA and the C-terminal flanking threonine play critical roles in the ability of RFB4-conjugated RTA peptide to bind to and damage ECs and (2) the LDV sequence in RTA induces early manifestations of apoptosis in HUVECs by activating caspase-3. These data suggest that RTA-mediated inhibition of protein synthesis (due to its active site) and apoptosis (due to LDV) may be mediated by different portions of the RTA molecule. These results suggest that ITs prepared with RTA mutants containing alterations in LDVT may kill tumor cells in vivo in the absence of EC-mediated VLS.  相似文献   

13.
Immunotoxins (ITs) containing plant or bacterial toxins have a dose-limiting toxicity of vascular leak syndrome (VLS) in humans. The active A chain of ricin toxin (RTA), other toxins, ribosome-inactivating proteins, and the VLS-inducing cytokine IL-2 contain the conserved sequence motif (x)D(y) where X = L, I, G, or V and Y = V, L, or S. RTA-derived LDV-containing peptides attached to a monoclonal antibody, RFB4, induce endothelial cell (EC) damage in vitro and vascular leak in two animal models in vivo. We have now investigated the mechanism(s) by which this occurs and have found that (1) the exposed D75 in the LDV sequence in RTA and the C-terminal flanking threonine play critical roles in the ability of RFB4-conjugated RTA peptide to bind to and damage ECs and (2) the LDV sequence in RTA induces early manifestations of apoptosis in HUVECs by activating caspase-3. These data suggest that RTA-mediated inhibition of protein synthesis (due to its active site) and apoptosis (due to LDV) may be mediated by different portions of the RTA molecule. These results suggest that ITs prepared with RTA mutants containing alterations in LDVT may kill tumor cells in vivo in the absence of EC-mediated VLS.  相似文献   

14.
Both cinnamomin and ricin are type II ribosome-inactivating proteins. Cinnamomin is less cytotoxic compared with ricin. In order to clarify the mechanism of their different cytotoxicities, the interaction of cinnamomin and its A-chain with model membrane was investigated and compared with that of ricin and its A-chain. It was revealed that cinnamomin is less effective than ricin in interacting with model membrane. Cinnamomin A-chain interacts with model membrane much less violently than ricin A-chain. The differences in the interaction of cinnamomin, ricin or their A-chains with model membrane might at least in part indicate the different cytotoxicity between cinnamomin and ricin.  相似文献   

15.
Ricin is a potent plant cytotoxin composed of an A-chain [RTA (ricin A-chain)] connected by a disulfide bond to a cell binding lectin B-chain [RTB (ricin B-chain)]. After endocytic uptake, the toxin is transported retrogradely to the ER (endoplasmic reticulum) from where enzymatically active RTA is translocated to the cytosol. This transport is promoted by the EDEM1 (ER degradation-enhancing α-mannosidase I-like protein 1), which is also responsible for directing aberrant proteins for ERAD (ER-associated protein degradation). RTA contains a 12-residue hydrophobic C-terminal region that becomes exposed after reduction of ricin in the ER. This region, especially Pro250, plays a crucial role in ricin cytotoxicity. In the present study, we introduced a point mutation [P250A (substitution of Pro250 with alanine)] in the hydrophobic region of RTA to study the intracellular transport of the modified toxin. The introduced mutation alters the secondary structure of RTA into a more helical structure. Mutation P250A increases endosomal-lysosomal degradation of the toxin, as well as reducing its transport from the ER to the cytosol. Transport of modified RTA to the cytosol, in contrast to wild-type RTA, appears to be EDEM1-independent. Importantly, the interaction between EDEM1 and RTA(P250A) is reduced. This is the first reported evidence that EDEM1 protein recognition might be determined by the structure of the ERAD substrate.  相似文献   

16.
Microglial cells, like macrophages, are very sensitive to ricin, a galactose-specific toxic lectin belonging to the family of ribosome-inactivating proteins. This toxin can be taken up by most cells through the binding of its B chain to galactose-containing molecules on the cell membrane. In macrophagic cell types it can be internalised also by mannose receptors which are present on the surface of these cells. Endocytosis of the toxin by either pathway was evaluated by ricin toxicity to primary cultures of rat microglial cells and to a microglial N11 cell line in the presence or absence of lactose and mannan, which compete for the endocytosis via the ricin lectin chain or cellular mannose receptors, respectively. Results were compared with those obtained in cultures of mouse macrophages, human monocytes, and a monocytic JM cell line. All cultures were protected from ricin toxicity more by lactose than by mannan, indicating that ricin endocytosis via its lectin B chain is prevalent over that mediated by cellular mannose receptors. However, a partial protection by mannan was observed in all cases but not-stimulated N11 cells, either in the form of direct protection or of significant additional protection over that afforded by lactose. Mannose receptor expression by N11 cells was negative before, and positive after, treatment with endotoxin, as assessed by the specific binding of 125I-mannose-bovine serum albumin. Moreover, a partial protection from ricin toxicity by mannan was induced in the N11 microglial line after stimulation, consistently with an inducible expression of the mannose receptor by activated cells switched towards a microglial phenotype.  相似文献   

17.
Volkensin, a type 2 ribosome-inactivating protein from the roots of Adenia volkensii Harms (kilyambiti plant) was characterized both at the protein and nucleotide level by direct amino acid sequencing and cloning of the gene encoding the protein. Gene sequence analysis revealed that volkensin is encoded by a 1569-bp ORF (523 amino acid residues) without introns, with an internal linker sequence of 45 bp. Differences in residues present at several sequence positions (reproduced after repeated protein sequence analyses), with respect to the gene sequence, suggest several isoforms for the volkensin A-chain. Based on the crystallographic coordinates of ricin, which shares a high sequence identity with volkensin, a molecular model of volkensin was obtained. The 3D model suggests that the amino acid residues of the active site of the ricin A-chain are conserved at identical spatial positions, including Ser203, a novel amino acid residue found to be conserved in all known ribosome-inactivating proteins. The sugar binding site 1 of the ricin B-chain is also conserved in the volkensin B-chain, whilst in binding site 2, His246 replaces Tyr248. Native volkensin contains two free cysteinyl residues out of 14 derived from the gene sequence, thus suggesting a further disulphide bridge in the B chain, in addition to the inter- and intrachain disulphide bond pattern common to other type 2 ribosome-inactivating proteins.  相似文献   

18.
Members of the type 2 ribosome-inactivating proteins (RIPs) family (e.g. ricin, abrin) are potent cytotoxins showing a strong lethal activity toward eukaryotic cells. Type 2 RIPs contain two polypeptide chains (usually named A, for "activity", and B, for "binding") linked by a disulfide bond. The intoxication of the cell is a consequence of a reductive process in which the toxic domain is cleaved from the binding domain by oxidoreductases located in the lumen of the endoplasmic reticulum (ER). The best known example of type 2 RIPs is ricin. Protein disulfide isomerase (PDI) was demonstrated to be involved in the process of ricin reduction; however, when PDI is depleted from cell fraction preparations ricin reduction can still take place, indicating that also other oxidoreductases might be implicated in this process. We have investigated the role of TMX, a transmembrane thioredoxin-related protein member of the PDI family, in the cell intoxication operated by type 2 RIPs ricin and abrin. Overexpressing TMX in A549 cells resulted in a dramatic increase of ricin or abrin cytotoxicity compared with control mock-treated cells. Conversely, no difference in cytotoxicity was observed after treatment of A549 cells or control cells with saporin or Pseudomonas exotoxin A whose intracellular mechanism of activation is not dependent upon reduction (saporin) or only partially dependent upon it (Pseudomonas exotoxin A). Moreover, the silencing of TMX in the prostatic cell line DU145 reduced the sensitivity of the cells to ricin intoxication further confirming a role for this enzyme in intracellular ricin activation.  相似文献   

19.
Ricin is a promising candidate for the treatment of cancer because it can be selectively targeted to tumor cells via linkage to monoclonal antibodies. Biochemical evidence suggests that escape of ricin or its ribosome-inactivating subunit from an intracellular compartment is mediated by retrograde transport to the endoplasmic reticulum and subsequent direction into the ER-associated degradation pathway. Alternatively, lipase activity of ricin may facilitate leakage from endocytic vesicles. We have observed ricin-mediated release of macromolecular dyes from lipid vesicles that mimic the composition of endosomal membranes. Release of small molecules occurs to the same extent, suggesting an all-or-none mechanism due to bilayer destabilization. The level of accompanying membrane fusion depends on vesicle composition. Since it takes 24 h of incubation before the first traces of lysolipids are detectable by matrix-assisted laser desorption/ionization mass spectrometry, membrane destabilization is not due to the lipase activity of ricin.Abbreviations CF Carboxyfluorescein - DPhPC Diphytanoyl-phosphatidylcholine - DPA Dipicolinic acid - EDTA Ethylendiamine-tetracetate - ER Endoplasmic reticulum - ERAD ER-associated degradation - FRET Fluorescence-resonance energy transfer - GM1 Monosialoganglioside - MALDI-MS Matrix-assisted laser desorption/ionization mass spectrometry - MES 2-Morpholino-ethanesulfonic acid - NBD-PE N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-phosphatidylethanolamine) - PC Phosphatidylcholine - PE Phosphatidylethanolamine - PG Phosphatidylglycerol - Rh-PE N-(lissamine rhodamine B sulfonyl)-phosphatidylethanolamine - RIP Ribosome-inactivating protein - RTA A-chain of ricin - RTB B-chain of ricin - TES N-[Tris-(hydroxymethyl)-methyl]-2-aminoethansulfonic acid - TOF Time-of-flight  相似文献   

20.
Ricin is a potent heterodimeric cytotoxin; the B chain binds eucaryotic cell surfaces aiding uptake and the A chain, RTA, reaches the cytoplasm where it enzymatically depurinates a key ribosomal adenine, inhibiting protein synthesis. Ricin is known to be an agent in bioterrorist repertoires and there is great interest in finding, or creating, efficacious inhibitors of the toxin as potential antidotes. We have previously identified two families of bicyclic RTA inhibitors, pterins and purines. Both classes have poor solubility which impairs inhibitor development. Here we report the use of 2-amino-4,6-dihydroxy-pyrimidines as RTA inhibitors. Unlike previously observed single ring inhibitor platforms, these displace Tyr 80 and bind deep in the RTA specificity pocket. These compounds are at least 10 times more soluble than pterin-based inhibitors and appear to be useful new class of ricin inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号