首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity.  相似文献   

2.
3.
The pollen specificity of the Arabidopsis arabinogalactan protein (AGP) genes AGP6 and AGP11 suggests that they are integral to pollen biogenesis, and their high percent of sequence similarity may indicate a potential for overlapping function. Arabidopsis agp6 agp11 double null mutants have been studied in our laboratory, and in the present work, we characterize the germination and growth of its pollen. When compared to wild type, mutant agp6 agp11 pollen displayed reduced germination and elongation, both in vivo and in vitro, and precocious germination inside the anthers, provided that sufficient moisture was available. This characteristic was not observed in wild type plants, even in water content conditions which for the mutant were sufficient for pollen germination. Therefore, an additional distinctive phenotypic trait of arabinogalactan proteins AGP6 and AGP11 may be to avert untimely germination of pollen. Such AGPs may control germination through water uptake, suggesting an important biological function of this gene family in pollen.  相似文献   

4.

Background and Aims

Cell wall pectins and arabinogalactan proteins (AGPs) are important for pollen tube growth. The aim of this work was to study the temporal and spatial dynamics of these compounds in olive pollen during germination.

Methods

Immunoblot profiling analyses combined with confocal and transmission electron microscopy immunocytochemical detection techniques were carried out using four anti-pectin (JIM7, JIM5, LM5 and LM6) and two anti-AGP (JIM13 and JIM14) monoclonal antibodies.

Key Results

Pectin and AGP levels increased during olive pollen in vitro germination. (1 → 4)-β-d-Galactans localized in the cytoplasm of the vegetative cell, the pollen wall and the apertural intine. After the pollen tube emerged, galactans localized in the pollen tube wall, particularly at the tip, and formed a collar-like structure around the germinative aperture. (1 → 5)-α-l-Arabinans were mainly present in the pollen tube cell wall, forming characteristic ring-shaped deposits at regular intervals in the sub-apical zone. As expected, the pollen tube wall was rich in highly esterified pectic compounds at the apex, while the cell wall mainly contained de-esterified pectins in the shank. The wall of the generative cell was specifically labelled with arabinans, highly methyl-esterified homogalacturonans and JIM13 epitopes. In addition, the extracellular material that coated the outer exine layer was rich in arabinans, de-esterified pectins and JIM13 epitopes.

Conclusions

Pectins and AGPs are newly synthesized in the pollen tube during pollen germination. The synthesis and secretion of these compounds are temporally and spatially regulated. Galactans might provide mechanical stability to the pollen tube, reinforcing those regions that are particularly sensitive to tension stress (the pollen tube–pollen grain joint site) and mechanical damage (the tip). Arabinans and AGPs might be important in recognition and adhesion phenomena of the pollen tube and the stylar transmitting cells, as well as the egg and sperm cells.  相似文献   

5.
Qin Y  Chen D  Zhao J 《Protoplasma》2007,231(1-2):43-53
Summary. Western blot analysis indicated the presence of two epitopes recognized by the anti-arabinogalactan protein antibodies JIM13 and LM2 and the absence of the JIM4 epitope in mature tobacco anthers. Immunoenzyme localization of arabinogalactan proteins (AGPs) with JIM13 showed that AGPs accumulate mainly at the early stages of anther development. AGP content and distribution were also investigated at the ultrastructural level in pollen tubes grown in vivo and in vitro. Abundant AGPs were present in the transmitting tissue of styles, and the AGP content of the extracellular matrix changed during pollen tube growth. In pollen tubes, immunogold particles were mainly distributed in the cell wall and cytoplasm, especially around the peripheral region of the generative-cell wall. β-D-Glucosyl Yariv reagent, which specifically binds to AGPs, caused slow growth of pollen tubes and reduced immunogold labeling of AGPs with JIM13 in vitro. These data suggest that AGPs participate in male gametogenesis and pollen tube growth and may be important surface molecules in generative and sperm cells. Correspondence and reprints: Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China.  相似文献   

6.
Arabinogalactan proteins (AGPs) are plant‐specific extracellular glycoproteins implicated in a variety of processes during growth and development. AGP biosynthesis involves O‐galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. However, functionally dominant Hyp O‐galactosyltransferases, such that their disruption produces phenocopies of AGP‐deficient mutants, remain to be identified. Here, we purified and identified three potent Hyp O‐galactosyltransferases, HPGT1, HPGT2 and HPGT3, from Arabidopsis microsomal fractions. Loss‐of‐function analysis indicated that approximately 90% of the endogenous Hyp O‐galactosylation activity is attributable to these three enzymes. AGP14 expressed in the triple mutant migrated much faster on SDS‐PAGE than when expressed in wild‐type, confirming a considerable decrease in levels of glycosylation of AGPs in the mutant. Loss‐of‐function mutant plants exhibited a pleiotropic phenotype of longer lateral roots, longer root hairs, radial expansion of the cells in the root tip, small leaves, shorter inflorescence stems, reduced fertility and shorter siliques. Our findings provide genetic evidence that Hyp‐linked arabinogalactan polysaccharide chains are critical for AGP function and clues to how arabinogalactan moieties of AGPs contribute to cell‐to‐cell communication during plant growth and development.  相似文献   

7.
Some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The specific labelling of the synergid cells and its filiform apparatus, which are the cells responsible for pollen tube attraction, and also the specific labelling of the micropyle and micropylar nucellus, which constitutes the pollen tube entryway into the embryo sac, are quite indicative of this role. We also discuss the possibility that AGPs in the sperm cells are probably involved in the double fertilization process.Key words: Arabidopsis, arabinogalactan proteins, AGP 6, gametic cells, pollen tube guidanceThe selective labelling obtained by us with monoclonal antibodies directed to the glycosidic parts of AGPs, in Arabidopsis and in other plant species, namely Amaranthus hypochondriacus,1 Actinidia deliciosa2 and Catharanthus roseus, shows that some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The evaluation of the selective labelling obtained with AGP-specific monoclonal antibodies (Mabs) JIM 8, JIM 13, MAC 207 and LM 2, during Arabidopsis pollen development, led us to postulate that some AGPs, in particular those with sugar epitopes identified by JIM 8 and JIM 13, can be classified as molecular markers for generative cell differentiation and development into male gametes.Likewise, we also postulated that the AGP epitopes recognized by Mabs JIM 8 and JIM 13 are also molecular markers for the development of the embryo sac in Arabidopsis thaliana. Moreover, these AGP epitopes are also present along the pollen tube pathway, predominantly in its last stage, the micropyle, which constitutes the region of the ovule in the immediate vicinity of the pollen tube target, the embryo sac.3We have recently shown the expression of AGP genes in Arabidopsis pollen grains and pollen tubes and also the presence of AGPs along Arabidopsis pollen tube cell surface and tip region, as opposed to what had been reported earlier. We have also shown that only a subset of AGP genes is expressed in pollen grain and pollen tubes, with prevalence for Agp6 and Agp11, suggesting a specific and defined role for some AGPs in Arabidopsis sexual reproduction (Pereira et al., 2006).4Therefore we continued by using an Arabidopsis line expressing GFP under the command of the Agp6 gene promoter sequence. These plants were studied under a low-power binocular fluorescence microscope. GFP labelling was only observed in haploid cells, pollen grains (Fig. 1) and pollen tubes (Fig. 2); all other tissues clearly showed no labelling. These observations confirmed the specific expression of Agp6 in pollen grains and pollen tubes. As shown in the Figures 1 and and2,2, the labelling with GFP is present in all pollen tube extension, so probably, AGP 6 is not one of the AGPs identified by JIM 8 and JIM 13, otherwise GFP light emission would localize more specifically in the sperm cells.5 So we think that MAC 207 which labels the entire pollen tube wall (Fig. 3) may indeed be recognizing AGP6, which seems to be expressed in the vegetative cell. In other words, the specific labelling obtained for the generative cell and for the two male gametes, is probably given by AGPs that are present in very low quantities, apparently not the case for AGP 6 or AGP 11.Open in a separate windowFigure 1Low-power binocular fluorescence microscope image of an Arabidopsis flower with the AGP 6 promoter:GFP construct. The labelling is evident in pollen grains that are being released and in others that are already in the stigma papillae.Open in a separate windowFigure 2Low-power binocular fluorescence microscope image of an Arabidopsis ovary with the AGP6 promoter:GFP construct. The ovary was partially opened to show the pollen tubes growing in the septum, and into the ovules. The pollen tubes are also labelled by GFP.Open in a separate windowFigure 3Imunofluorescence image of a pollen tube growing in vitro, and labeled by MAC 207 monoclonal antibody. The labelling is evident all over the pollen tube wall.After targeting an ovule, the pollen tube growth arrests inside a synergid cell and bursts, releasing the two sperm cells. It has recently been shown that sperm cells, for long considered to be passive cargo, are involved in directing the pollen tube to its target. In Arabidopsis, HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to the ovules.6 The same could be happening with the AGPs identified in the sperm cells by JIM 8 and JIM 13. We are now working on tagging these AGPs and using transgenic plants aiming to answer to such questions.Pollen tube guidance in the ovary has been shown to be in the control of signals produced by the embryo sac. When pollen tubes enter ovules bearing feronia or sirene mutations (the embryo sac is mutated), they do not stop growing and do not burst. In Zea mays a pollen tube attractant was recently identified in the egg apparatus and synergids.7 Chimeric ZmEA1 fused to green fluorescent protein (ZmEA1:GFP) was first visible within the filiform apparatus and later was localized to nucellar cell walls below the micropylar opening of the ovule. This is the same type of labelling that we have shown in Arabidopsis ovules, using Mabs JIM 8 and JIM 13. We are now involved in the identification of the specific AGPs associated with the labellings that we have been showing.  相似文献   

8.
Successful male reproductive function in plants is dependent on the correct development and functioning of stamens and pollen. AGP6 and AGP11 are two homologous Arabidopsis genes encoding cell wall-associated arabinogalactan glycoproteins (AGPs). Both genes were found to be specifically expressed in stamens, pollen grains and pollen tubes, suggesting that these genes may play a role in male organ development and function. RNAi lines with reduced AGP6 and AGP11 expression were generated. These, together with lines harboring point mutations in the coding region of AGP6, were used to show that loss of function in AGP6 and AGP11 led to reduced fertility, at least partly as a result of inhibition of pollen tube growth. Our results also suggest that AGP6 and AGP11 play an additional role in the release of pollen grains from the mature anther. Thus, our study demonstrates the involvement of specific AGPs in pollen tube growth and stamen function.  相似文献   

9.
Although plants contain substantial amounts of arabinogalactan proteins (AGPs), the enzymes responsible for AGP glycosylation are largely unknown. Bioinformatics indicated that AGP galactosyltransferases (GALTs) are members of the carbohydrate-active enzyme glycosyltransferase (GT) 31 family (CAZy GT31) involved in N- and O-glycosylation. Six Arabidopsis GT31 members were expressed in Pichia pastoris and tested for enzyme activity. The At4g21060 gene (named AtGALT2) was found to encode activity for adding galactose (Gal) to hydroxyproline (Hyp) in AGP protein backbones. AtGALT2 specifically catalyzed incorporation of [14C]Gal from UDP-[14C]Gal to Hyp of model substrate acceptors having AGP peptide sequences, consisting of non-contiguous Hyp residues, such as (Ala-Hyp) repetitive units exemplified by chemically synthesized (AO)7 and anhydrous hydrogen fluoride-deglycosylated d(AO)51. Microsomal preparations from Pichia cells expressing AtGALT2 incorporated [14C]Gal to (AO)7, and the resulting product co-eluted with (AO)7 by reverse-phase HPLC. Acid hydrolysis of the [14C]Gal-(AO)7 product released 14C-radiolabel as Gal only. Base hydrolysis of the [14C]Gal-(AO)7 product released a 14C-radiolabeled fragment that co-eluted with a Hyp-Gal standard after high performance anion-exchange chromatography fractionation. AtGALT2 is specific for AGPs because substrates lacking AGP peptide sequences did not act as acceptors. Moreover, AtGALT2 uses only UDP-Gal as the substrate donor and requires Mg2+ or Mn2+ for high activity. Additional support that AtGALT2 encodes an AGP GALT was provided by two allelic AtGALT2 knock-out mutants, which demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared with wild type plants. Confocal microscopic analysis of fluorescently tagged AtGALT2 in tobacco epidermal cells indicated that AtGALT2 is probably localized in the endomembrane system consistent with its function.  相似文献   

10.

Background and Aims

Stigmatic receptivity plays a clear role in pollination dynamics; however, little is known about the factors that confer to a stigma the competence to be receptive for the germination of pollen grains. In this work, a developmental approach is used to evaluate the acquisition of stigmatic receptivity and its relationship with a possible change in arabinogalactan-proteins (AGPs).

Methods

Flowers of the domestic apple, Malus × domestica, were assessed for their capacity to support pollen germination at different developmental stages. Stigmas from these same stages were characterized morphologically and different AGP epitopes detected by immunocytochemistry.

Key Results

Acquisition of stigmatic receptivity and the secretion of classical AGPs from stigmatic cells occurred concurrently and following the same spatial distribution. While in unpollinated stigmas AGPs appeared unaltered, in cross-pollinated stigmas AGPs epitopes vanished as pollen tubes passed by.

Conclusions

The concurrent secretion of AGPs with the acquisition of stigmatic receptivity, together with the differential response in unpollinated and cross-pollinated pistils point out a role of AGPs in supporting pollen tube germination and strongly suggest that secretion of AGPs is associated with the acquisition of stigma receptivity.Key words: AGPs, arabinogalactan proteins, apple, Malus × domestica, pollen, pollen tube, stigma, stigmatic receptivity, flower receptivity  相似文献   

11.
Summary The monoclonal antibodies JIM 5 (against unesterified pectin), JIM 7 (against methyl esterified pectin), MAC 207 (against arabinogalactan proteins, AGPs), and JIM 8 (against a subset of AGPs) were utilized singly or in combinations for immunogold labelling of germinated pollen grains and pollen tubes ofNicotiana tabacum. Pectins were localized in the inline of pollen grain, unesterified pectin being more abundant than the esterified one. AGPs were co-localized with pectin in the inline, but were present preferably close to the plasma membrane. In pollen tubes, AGPs, unesterified and esterified pectins were co-localized in the outer and middle layers of the cell wall. The density of the epitopes was not uniform along the length of the pollen tube, but showed alterations. In the pollen tube tip wall esterified pectin was abundantly present, but not AGPs. In the cytoplasm esterified pectin and AGPs were detected in Golgi derived vesicles, indicating their role in the pathway of the cell wall precursors. In the cell wall of generative cell only AGPs, but no pectins were localized. The co-localization of pectins and AGPs in the cell wall of pollen grain and pollen tube might play an important role, not only in maintenance of the cell shape, but also in cell-cell interaction during pollen tube growth and development.Abbreviations AGP arabinogalactan protein - BSA bovine serum albumin - GA glutaraldehyde - MAb monoclonal antibody - NGS normal goat serum - PFA paraformaldehyde  相似文献   

12.
In lily, adhesion of the pollen tube to the transmitting-tract epidermal cells (TTEs) is purported to facilitate the effective movement of the tube cell to the ovary. In this study, we examine the components of the extracellular matrices (ECMs) of the lily pollen tubes and TTEs that may be involved in this adhesion event. Several monoclonal antibodies to plant cell wall components such as esterified pectins, unesterified pectins, and arabinogalactan-proteins (AGPs) were used to localize these molecules in the lily pollen tube and style at both light microscope (LM) and transmission electron microscope (TEM) levels. In addition, (-d-Glc)3 Yariv reagent which binds to AGPs was used to detect AGPs in the pollen tube and style. At the LM level, unesterified pectins were localized to the entire wall in in-vivo- and in-vitro-grown pollen tubes as well as to the surface of the stylar TTEs. Esterified pectins occurred at the tube tip region (with some differences in extent in in-vivo versus in-vitro tubes) and were evenly distributed in the entire style. At the TEM level, esterified pectins were detected inside pollen tube cell vesicles and unesterified pectins were localized to the pollen tube wall. The in-vivo pollen tubes adhere to each other and can be separated by pectinase treatment. At the LM level, AGP localization occurred in the tube tip of both in-vivo- and in-vitro-grown pollen tubes and, in the case of one AGP probe, on the surface of the TTEs. Another AGP probe localized to every cell of the style except the surface of the TTE. At the TEM level, AGPs were mainly found on the plasma membrane and vesicle membranes of in-vivo-grown pollen tubes as well as on the TTE surface, with some localization to the adhesion zone between pollen tubes and style. (-d-Glc)3 Yariv reagent bound to the in-vitro-grown pollen tube tip and significantly reduced the growth of both in-vitro- and in-vivo-grown pollen tubes. This led to abnormal expansion of the tube tip and random deposition of callose. These effects could be overcome by removal of (-d-Glc)3 Yariv reagent which resulted in new tube tip growth zones emerging from the flanks of the arrested tube tip. The possible roles of pectins and AGPs in adhesion during pollination and pollen tube growth are discussed.Abbreviations AGP arabinogalactan-protein - ECM extracellular matrix - Glc glucose - MAbs monoclonal antibodies - LM light microscope - Man mannose - TEM transmission electron microscope - TTE transmitting tract epidermal cell The authors thank Michael Georgiady for assistance with the preparation of material for the TEM immunolocalization, Diana Dang for her help with the pectinase experiment, and Kathleen Eckard for assistance in all aspects of this study. The MAbs were the generous gifts of Dr. J.P. Knox. G.Y. Jauh thanks Dr. E.A. Nothnagel for assistance in making the Yariv reagent and for the gift of the control (-d-Man)3 Yariv reagent. This work is in partial fulfilment of the dissertation requirements for a PhD degree in Botany and Plant Sciences for G.Y. Jauh at the University of California, Riverside. This work was supported by National Science Foundation grant 91-18554 and an R.E.U. grant to E.M.L.  相似文献   

13.
Mollet JC  Kim S  Jauh GY  Lord EM 《Protoplasma》2002,219(1-2):89-98
Arabinogalactan proteins (AGPs) are abundant complex macromolecules involved in both reproductive and vegetative plant growth. They are secreted at pollen tube tips in Lilium longiflorum. Here, we report the effect of the (beta-D-glucosyl)3 Yariv phenylglycoside, known to interact with AGPs, on pollen tube extension in several plant species. In Annona cherimola the Yariv reagent clearly inhibited pollen tube extension within 1-2 h of treatment, as demonstrated previously for L. longiflorum, but had no effect on Lycopersicon pimpinellifolium, Aquilegia eximia, and Nicotiana tabacum. With the monoclonal antibody JIM13 we also examined these same species for evidence that they secreted AGPs at their pollen tube tips. Only A. cherimola showed evidence of AGPs at the pollen tube tip as does lily. The Yariv reagent causes arrest of tube growth in both A. cherimola and lily, but its removal from the medium allows regeneration of new tip growth in both species. We show that the site of the new emerging tip in lily can be predicted by localization of AGP secretion. Labeling with JIM13 appeared on the flanks of the arrested tip 1 h after removal of the Yariv reagent from the growth medium. After 4 h, many of the Yariv reagent-treated pollen tubes had regenerated new pollen tubes with the tips brightly labeled by JIM13 and with a collar of AGPs left at the emergence site. During this recovery, esterified pectins colocalized with AGPs. Secretion at the site of the new tip may be important in the initial polarization event that occurs on the flanks of the arrested tube tip and results in a new pollen tube.  相似文献   

14.
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39–4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39–4 gene, JIM13 and JIM14 epitopes found specifically in 2–4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.  相似文献   

15.

Background and Aims Trithuria

is the sole genus of Hydatellaceae, a family of the early-divergent angiosperm lineage Nymphaeales (water-lilies). In this study different arabinogalactan protein (AGP) epitopes in T. submersa were evaluated in order to understand the diversity of these proteins and their functions in flowering plants.

Methods

Immunolabelling of different AGPs and pectin epitopes in reproductive structures of T. submersa at the stage of early seed development was achieved by immunofluorescence of specific antibodies.

Key Results

AGPs in Trithuria pistil tissues could be important as structural proteins and also as possible signalling molecules. Intense labelling was obtained with anti-AGP antibodies both in the anthers and in the intine wall, the latter associated with pollen tube emergence.

Conclusions

AGPs could play a significant role in Trithuria reproduction, due to their specific presence in the pollen tube pathway. The results agree with labellings obtained for Arabidopsis and confirms the importance of AGPs in angiosperm reproductive structures as essential structural components and probably important signalling molecules.  相似文献   

16.
17.
A common adaptation in angiosperms is the deposition of hydrophilic mucilage into the apoplast of seed coat epidermal cells during the course of their differentiation. Upon imbibition, seed mucilage, composed mainly of carbohydrates (i.e. pectins, hemicelluloses and glycans) expands rapidly, encapsulating the seed and aiding in seed dispersal and germination. The FEI1/FEI2 receptor-like kinases and the SOS5 extracellular GPI-anchored protein were previously shown to act on a pathway regulating cellulose biosynthesis during Arabidopsis root elongation. In the highlighted study, we demonstrated that FEI2 and SOS5 regulate the production of the cellulosic rays deposited across the inner adherent-layer of seed mucilage. Mutations in either fei2 or sos5 disrupted the formation of rays, which was associated with an increase in the soluble, outer layer of pectin mucilage and accompanied by a reduction in the inner adherent-layer. Mutations in CELLULOSE SYNTHASE 5 also led to reduced rays and mal-partitioning of the pectic component of seed mucilage, further establishing a structural role for cellulose in seed mucilage. Here, we show that FEI2 expressed from a CaMV 35S promoter complemented both root and seed mucilage defects of the fei1 fei2 double mutant. In contrast, expression of FEI1 from a 35S promoter complemented the root, but not the seed phenotype of the fei1 fei2 double mutant, suggesting that unlike in the root, FEI2 plays a unique and non-redundant role in the regulation of cellulose synthesis in seed mucilage. Altogether, these data suggest a novel role for cellulose in anchoring the pectic component of seed mucilage to the seed surface and indicate that the FEI2 protein has a function distinct from that of FEI1, despite the high sequence similarity of these RLKs.  相似文献   

18.
It is well established that the actin cytoskeleton is absolutely essential to pollen germination and tube growth. In this study we investigated the effects of cytochalasin B (CB), which affects actin polymerization by binding to the barbed end of actin filaments, on apple (Malus pumila Mill.) pollen tube growth. Results showed that CB altered the morphology of pollen tubes, which had a larger diameter than control tubes beside inhibiting pollen germination and tube growth. Meantime CB also caused an abnormal distribution of actin filaments in the shank of the treated pollen tubes. Fluo-3/AM labeling indicated that the gradient of cytosolic calcium ([Ca2+]c) in the pollen tube tip was abolished by exposure to CB, which induced a much stronger signal in the cytoplasm. Cellulose and callose distribution in the tube apex changed due to the CB treatment. Immunolabeling with different pectin and arabinogalactan protein (AGP) antibodies illustrated that CB induced an accumulation of pectins and AGPs in the tube cytoplasm and apex wall. The above results were further supported by Fourier-transform infrared (FTIR) analysis. The results suggest the disruption of actin can result in abnormal growth by disturbing the [Ca2+]c gradient and the distribution of cell wall components at the pollen tube apex.  相似文献   

19.
20.
Phosphoinositides are important lipids involved in membrane identity, vesicle trafficking, and intracellular signaling. In recent years, phosphoinositides have been shown to play a critical role in polarized secretion in plants, as perturbations of phosphoinositide metabolism, through loss of function mutants, result in defects in root hair elongation and pollen tube growth, where polarized secretion occurs rapidly. In the Brassicaceae, responses of stigmatic papillae to compatible pollen are also thought to involve highly regulated secretory events to facilitate pollen hydration and penetration of the pollen tube through the stigmatic surface. We therefore sought to analyze the female sporophyte fertility of the root hair defective4-1 mutant and the PI 4-kinase β1/β2 double mutant, which differentially affect phosphatidylinositol-4-phosphate (PI4P) levels. Stigmas from both mutants supported slower rates of pollen grain hydration, and the fecundity of these mutants was also diminished as a result of failed pollination events. This study therefore concludes that PI4P is integral to appropriate pistil responses to compatible pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号