首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have sought to associate the Pro12Ala variant of the peroxisome proliferator-activated receptor gamma2 (PPARG2) gene with type 2 diabetes, insulin resistance, and obesity, with controversial results. We have determined the Pro12Ala variant frequency in 370 nondiabetic Mexican Mestizo subjects and in five Mexican Amerindian groups and have investigated its possible association with lipid metabolism, insulin serum levels, and obesity in three of these populations. Two independent case-control studies were conducted in 239 nondiabetic individuals: 135 case subjects (BMI > or = 25 kg/m2) and 104 control subjects (BMI < 25 kg/m2). The PPARG2 Ala12 allele frequency was higher in most Amerindian populations (0.17 in Yaquis, 0.16 in Mazahuas, 0.16 in Mayans, and 0.20 in Triquis) than in Asians, African Americans, and Caucasians. The Pro12Ala and Ala12Ala (X12Ala) genotypes were significantly associated with greater BMI in Mexican Mestizos and in two Amerindian groups. X12Ala individuals had a higher risk of overweight or obesity than noncarriers in Mestizos (OR = 3.67; 95% CI, 1.42-9.48; p = 0.007) and in Yaquis plus Mazahuas (OR = 3.21; 95% CI, 1.27-8.11; p = 0.013). Our results provide further support of the association between the PPARG2 Ala12 allele and risk of overweight or obesity in Mestizos and two Amerindian populations from Mexico.  相似文献   

2.

Background

The 12Ala allele of the Peroxisome Proliferator-Activated Receptor gamma gene (PPARG) Pro12Ala polymorphism produces a decreased binding affinity of the PPARγ2 protein, resulting in low activation of the target genes. The 12Ala allele carriers display a significantly improved insulin sensitivity that may result in better glucose utilisation in working skeletal muscles. We hypothesise that the PPARG 12Ala allele could be associated with strength athlete status in Polish athletes.

Methodology

The genotype distribution of PPARG Pro12Ala was examined in 660 Polish athletes. The athletes were stratified into four subgroups: endurance, strength-endurance, sprint-strength and strength. Control samples were prepared from 684 unrelated sedentary volunteers. A χ2 test was used to compare the PPARG Pro12Ala allele and genotype frequencies between the different groups of athletes and control subjects. Bonferroni’s correction for multiple testing was applied.

Results

A statistically significant higher frequency of PPARG 12Ala alleles was observed in the subgroup of strength athletes performing short-term and very intense exertion characterised by predominant anaerobic energy production (13.2% vs. 7.5% in controls; P = 0.0007).

Conclusion

The PPARG 12Ala allele may be a relevant genetic factor favouring strength abilities in professional athletes, especially in terms of insulin-dependent metabolism, a shift of the energy balance towards glucose utilisation and the development of a favourable weight-to-strength ratio.  相似文献   

3.
Abstract

Association of peroxisome proliferator-activated receptor gamma (PPARγ) Pro12Ala gene polymorphism with type 2 diabetic nephropathy (T2DN) risk in Caucasians is still not clear. This investigation was conducted to assess if there was an association between the PPARγ Pro12Ala gene polymorphism and T2DN risk in Caucasians using meta-analysis. The relevant literatures were identified from PubMed, and Cochrane Library on 10 October 2013, and eligible studies were included and synthesized. Six reports including eight studies were recruited into this meta-analysis for the association of the PPARγ Pro12Ala gene polymorphism with T2DN risk in Caucasians. The Pro/Pro genotype was shown to be associated with T2DN risk in Caucasians. However, the Ala/Ala genotype and Ala allele were not associated with T2DN risk in Caucasians. In the sensitivity analysis, according to the control source from hospital, the control source from population, the genotyping methods using PCR-RFLP, Taqman, sample size of case <100, the association of the PPARγ Pro12Ala gene polymorphism with T2DN risk was similar to those in non-sensitivity analysis. In conclusion, the PPARγ Pro/Pro genotype was associated with T2DN risk in Caucasians, but the Ala/Ala genotype and Ala allele not. However, additional studies are required to firmly establish a correlation between the PPARγ Pro12Ala gene polymorphism and T2DN risk in Caucasians.  相似文献   

4.
Genetic factors may interact with lifestyle factors to modify obesity risk. FTO and PPARG2 are relevant obesogenes. Our aim was to explore the effect of Pro12Ala (rs1801282) of PPARG2 and rs9939609 of FTO on obesity risk and to examine their interaction with lifestyle factors in an elderly population. Subjects (n = 978; aged 69 ± 6) were recruited from the SUN (Seguimiento Universidad de Navarra) Project. DNA was obtained from saliva, and lifestyle and dietary data were collected by validated self-reported questionnaires. Genotyping was assessed by RT-PCR plus allele discrimination. Subjects carrying the Ala allele of PPARG2 gene had a significantly increased obesity risk compared to non-carrier (Pro12Pro) subjects (OR, 1.66; 95  % CI, 1.01–2.74; p = 0.045). Greater obesity risk was also found in inactive or high carbohydrate intake subjects with the Ala12 allele of PPARG2 gene. Interestingly, subjects carrying the Ala allele of the PPARG2 gene and with a high CHO (>246 g/day) intake had an increased obesity risk compared to Pro12Pro subjects (OR, 2.67; 95 % CI, 1.3–5.46; p = 0.007; p for [CHO × PPARG2] interaction = 0.046). Moreover, in subjects with a high CHO intake, the co-presence of the Ala allele of PPARG2 gene and one minor A allele (rs9939609) of FTO gene did increase obesity risk (OR, 3.26; 95 % CI, 1.19–8.89; p = 0.021) when compared to non-carrier (Pro12Pro/TT) subjects. In conclusion, it appears that lifestyle factors may act as effect modifiers for obesity risk linked to Ala12 allele of the PPARG2 gene and the minor A allele of FTO gene in an elderly population.  相似文献   

5.
Our study aimed to analyze whether the expression of PPARγ mRNA in subcutaneous adipocyte tissue correlates with Pro12Ala PPARγ2 polymorphism in the obesity context. We found that mRNA expression of PPARγ in subcutaneous adipose tissue was greater in obese subjects (P < 0.05) than in the nonobese control group. Concurrently, genotyping of the Pro12Ala polymorphism showed that obese subjects possess a significantly higher frequency of the Pro/Pro genotype than nonobese controls (90.5 vs 79.5%; P = 0.03), suggesting that this genotype is involved in an increased risk of obesity in the Tunisian population. Taken together, our results demonstrate that the Pro12 allele is accompanied by an overexpression of PPARγ mRNA in subcutaneous adipocyte tissue, suggesting that the PPARγ Pro12Ala variant may contribute to the observed variability in PPARγ mRNA expression and consequently in body mass index and insulin sensitivity in the general population.  相似文献   

6.
Human and animal studies suggest an interaction between the Pro12Ala polymorphism of PPARG and dietary fat. In this randomized crossover clinical trial, we investigated whether subjects with the Pro12Pro and Ala12Ala genotypes of PPARG respond differently to a diet supplemented with high saturated (SAFA) or polyunsaturated fatty acid (PUFA).We recruited non-diabetic men from a population-based METSIM study (including 10,197 men) to obtain men with the Ala12Ala and the Pro12Pro genotypes matched for age and body mass index. Seventeen men with the Pro12Pro genotype and 14 with the Ala12Ala genotype were randomized to both a PUFA diet and a SAFA diet for 8 weeks in a crossover setting. Serum lipids and adipose tissue mRNA expression were measured during the diet intervention. At baseline, subjects with the Ala12Ala genotype had higher levels of HDL cholesterol and lower levels of LDL cholesterol, total triglycerides, and apolipoprotein B compared to those subjects with the Pro12Pro genotype (P < 0.05, FDR < 0.1). The Ala12Ala genotype also associated with higher mRNA expression of PPARG2, LPIN1, and SREBP-1c compared to participants with the Pro12Pro genotype (FDR < 0.001). On the other hand, PUFA diet resulted in lower levels of fasting glucose, total cholesterol, total triglycerides, and apolipoprotein B (P < 0.05, FDR < 0.1) but did not affect PPARG2 mRNA expression in adipose tissue. We conclude that individuals with the Pro12Pro genotype, with higher triglyceride levels at baseline, are more likely to benefit from the PUFA diet. However, the beneficial effects of dietary PUFA and the Ala12Ala genotype of PPARG on serum lipids are mediated through divergent mechanisms.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0493-z) contains supplementary material, which is available to authorized users.  相似文献   

7.
INTRODUCTION: The aim of this study was to examine the association of Pro12Ala PPARgamma2 polymorphism with anthropometric and biochemical parameters defining the risk for the development of metabolic syndrome in a healthy population of men. MATERIAL AND METHODS: The study group consisted of 176 healthy men, aged 25-65 years (average 54.16 years). Polymorphisms of the PPAR-g gene (Pro12Ala, Ala12Ala, Pro12Pro) were explored using the PCR-RFLP method. Plasma glucose, insulin, total cholesterol, LDL, HDL and TG were measured using commercially available kits. RESULTS: The genotypic distribution of the Pro12Ala polymorphism was as follows: Pro/Ala 69.8% (n = 123), Ala/Ala 28.4% (n = 50) and Pro/Pro 1.8% (n = 3). The Pro12Ala and Ala12Ala subjects did not differ in any of the measured variables. The non-obese (BMI < 30 kg/m(2), n = 117) and obese subpopulations (BMI > 30 kg/m(2), n = 56) did not significantly differ in the distribution of the genotypes. In the nonobese subpopulation, the homozygous Ala12 carriers (n = 38, 32.4%) had higher systolic blood pressure, plasma triglycerides, insulin levels and HOMA-IR. CONCLUSIONS: We conclude that despite the high frequency of the Ala allele at the PPAR-gamma2 gene in our population of Polish men, the Ala12 allele does not appear to improve insulin sensitivity or have an influence on the occurrence of obesity. It remains to be explained by larger studies if this polymorphism carries any risk of the development of metabolic abnormalities in non-obese men.  相似文献   

8.
Objective: The Pro12Ala polymorphism in exon B of peroxisome proliferator‐activated receptor γ 2 (PPARγ2) gene has been related to obesity, insulin resistance, and risk of type 2 diabetes. In this study, the effect of the Pro12Ala polymorphism on long‐term changes in weight and body composition was investigated. Research Methods and Procedures: The Pro12Ala polymorphism was genotyped in 311 subjects who participated in our previous population‐based study. In that study, weight at birth, 7 years, 20 years, and 41 years, and ponderal index at birth and BMI and waist circumference at 41 years were recorded. Results: The Ala12 allele of the PPARγ2 gene was associated with high ponderal index at birth (2.77 ± 0.27 kg/m3 in subjects with the Ala12Ala genotype, 2.79 ± 0.29 kg/m3 in subjects with the Pro12Ala genotype, and 2.63 ± 0.25 kg/m3 in subjects with the Pro12Pro genotype, p = 0.007, adjusted for gender) and weight at 7 years (p = 0.045) and tended to be associated with high birth weight (p = 0.094). Subjects with this allele gained less weight between 7 and 20 years (p = 0.043) and more weight between 20 and 41 years (p = 0.001) and ended up having higher waist circumference (p = 0.040) in adulthood than did subjects with the Pro12Pro genotype. Discussion: We conclude that the Pro12Ala polymorphism of the PPARγ2 gene regulates weight and body composition from utero to adulthood.  相似文献   

9.
BackgroundSpending more time active (and less sedentary) is associated with health benefits such as improved cardiovascular health and lower risk of all-cause mortality. It is unclear whether these associations differ depending on whether time spent sedentary or in moderate-vigorous physical activity (MVPA) is accumulated in long or short bouts. In this study, we used a novel method that accounts for substitution (i.e., more time in MVPA means less time sleeping, in light activity or sedentary) to examine whether length of sedentary and MVPA bouts associates with all-cause mortality.Methods and findingsWe used data on 79,503 adult participants from the population-based UK Biobank cohort, which recruited participants between 2006 and 2010 (mean age at accelerometer wear 62.1 years [SD = 7.9], 54.5% women; mean length of follow-up 5.1 years [SD = 0.73]). We derived (1) the total time participants spent in activity categories—sleep, sedentary, light activity, and MVPA—on average per day; (2) time spent in sedentary bouts of short (1 to 15 minutes), medium (16 to 40 minutes), and long (41+ minutes) duration; and (3) MVPA bouts of very short (1 to 9 minutes), short (10 to 15 minutes), medium (16 to 40 minutes), and long (41+ minutes) duration. We used Cox proportion hazards regression to estimate the association of spending 10 minutes more average daily time in one activity or bout length category, coupled with 10 minutes less time in another, with all-cause mortality. Those spending more time in MVPA had lower mortality risk, irrespective of whether this replaced time spent sleeping, sedentary, or in light activity, and these associations were of similar magnitude (e.g., hazard ratio [HR] 0.96 [95% CI: 0.94, 0.97; P < 0.001] per 10 minutes more MVPA, coupled with 10 minutes less light activity per day). Those spending more time sedentary had higher mortality risk if this replaced light activity (HR 1.02 [95% CI: 1.01, 1.02; P < 0.001] per 10 minutes more sedentary time, with 10 minutes less light activity per day) and an even higher risk if this replaced MVPA (HR 1.06 [95% CI: 1.05, 1.08; P < 0.001] per 10 minutes more sedentary time, with 10 minutes less MVPA per day). We found little evidence that mortality risk differed depending on the length of sedentary or MVPA bouts. Key limitations of our study are potential residual confounding, the limited length of follow-up, and use of a select sample of the United Kingdom population.ConclusionsWe have shown that time spent in MVPA was associated with lower mortality, irrespective of whether it replaced time spent sleeping, sedentary, or in light activity. Time spent sedentary was associated with higher mortality risk, particularly if it replaced MVPA. This emphasises the specific importance of MVPA. Our findings suggest that the impact of MVPA does not differ depending on whether it is obtained from several short bouts or fewer longer bouts, supporting the recent removal of the requirement that MVPA should be accumulated in bouts of 10 minutes or more from the UK and the United States policy. Further studies are needed to investigate causality and explore health outcomes beyond mortality.

Louise Millard and co-workers study associations between bouts of moderate-to-vigorous physical activity and mortality.  相似文献   

10.
The PPARγ2 gene single nucleotide polymorphism (SNP) Pro12Ala has shown variable association with metabolic syndrome traits in healthy subjects. The RISCK Study investigated the effect of interaction between genotype and the ratio of polyunsaturated:saturated (P:S) fatty acid intake on plasma lipids in 367 white subjects (ages 30-70 years) at increased cardiometabolic risk. Interaction was determined after habitual diet at recruitment, at baseline after a 4-week high-SFA (HS) diet, and after a 24-week reference (HS), high-MUFA (HM), or low-fat (LF) diet. At recruitment, there were no significant associations between genotype and plasma lipids; however, P:S × genotype interaction influenced plasma total cholesterol (TC) (P = 0.02), LDL-cholesterol (LDL-C) (P = 0.002), and triglyceride (TG) (P = 0.02) concentrations. At P:S ratio ≤ 0.33, mean TC and LDL-C concentrations in Ala12 allele carriers were significantly higher than in noncarriers (respectively, P = 0.003; P = 0.0001). Significant trends in reduction of plasma TC (P = 0.02) and TG (P = 0.002) concentrations occurred with increasing P:S (respectively, ≤0.33 to >0.65; 0.34 to >0.65) in Ala12 allele carriers. There were no significant differences between carriers and noncarriers after the 4-week HS diet or 24-week interventions. Plasma TC and TG concentrations in PPARG Ala12 allele carriers decrease as P:S increases, but they are not dependent on a reduction in SFA intake.  相似文献   

11.

Background

Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of hepatic steatosis in the absence of excess alcohol consumption. The pathogenesis of fatty liver disease and steatohepatitis (NASH) is not fully elucidated, but the common association with visceral obesity, hyperlipidemia, hypertension and type 2 diabetes mellitus (T2DM) suggests that it is the hepatic manifestation of metabolic syndrome. Peroxisome proliferator-activated receptor PPARα and PPARγ are members of a family of nuclear receptors involved in the metabolism of lipids and carbohydrates, adipogenesis and sensitivity to insulin. The objective of this study was to analyze the polymorphisms Leu162Val of PPARα and Pro12Ala of PPARγ as genetic risk factors for the development and progression of NAFLD.

Methods

One hundred and three NAFLD patients (89 NASH, 14 pure steatosis) and 103 healthy volunteers were included. Single nucleotide polymorphisms (SNPs) Leu162Val and Pro12Ala were analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP).

Results

NASH patients presented higher BMI, AST and prevalence of T2DM than patients with pure steatosis. A higher prevalence of 12Ala allele was observed in the NASH Subgroup when compared to Control Group. When we grouped NASH and Steatosis Subgroups (NAFLD), we found lower serum glucose and more advanced fibrosis in the Leu162Val SNP. On the other hand, there was no statistical difference in clinical, laboratorial and histological parameters according to the Pro12Ala SNP.

Conclusions

We documented a lower prevalence of 12Ala allele of gene PPARγ in the NASH Subgroup when compared to Control Group. In NAFLD patients, there were no associations among the occurrence of Pro12Ala SNP with clinical, laboratorial and histological parameters. We also documented more advanced fibrosis in the Leu162Val SNP. The obtained data suggest that Pro12Ala SNP may result in protection against liver injury and that Leu162Val SNP may be involved in the progression of NAFLD.  相似文献   

12.
Athletic performance is a polygenic trait influenced by both environmental and genetic factors.

Objective

To investigate individually and in combination the association of common gene polymorphisms with athlete status in Ukrainians.

Methods

A total of 210 elite Ukrainian athletes (100 endurance-oriented and 110 power-orientated athletes) and 326 controls were genotyped for ACE I/D, HIF1A Pro582Ser, NOS3 –786 T/C, PPARA intron 7 G/C, PPARG Pro12Ala and PPARGC1B Ala203Pro gene polymorphisms, most of which were previously reported to be associated with athlete status or related intermediate phenotypes in different populations.

Results

Power-oriented athletes exhibited an increased frequency of the HIF1A Ser (16.1 vs. 9.4%, P = 0.034) and NOS3 T alleles (78.3 vs. 66.2%, P = 0.0019) in comparison with controls. Additionally, we found that the frequency of the PPARG Ala allele was significantly higher in power-oriented athletes compared with the endurance-oriented athletes (24.7 vs. 13.5%; P = 0.0076). Next, we determined the total genotype score (TGS, from the accumulated combination of the three polymorphisms, with a maximum value of 100 for the theoretically optimal polygenic score) in athletes and controls. The mean TGS was significantly higher in power-oriented athletes (39.1 ± 2.3 vs. 32.6 ± 1.5; P = 0.0142) than in controls.

Conclusions

We found that the HIF1A Ser, NOS3 T and PPARG Ala alleles were associated with power athlete status in Ukrainians.  相似文献   

13.
Long-chain n-3 fatty acids (n-3 LCPUFA) improve blood pressure (BP) and lipid profile in adults and improve insulin sensitivity in rodents. We have previously shown that n-3 LCPUFA reduces BP and plasma triacylglycerol (TAG) in infants. Few studies have found effects on glucose homeostasis in humans. We explored possible effect modification by FADS, PPARG2, and COX2 genotypes to support potential effects of n-3 LCPUFA on metabolic markers in infants. Danish infants (133) were randomly allocated to daily supplementation with a teaspoon (~5 mL/day) of fish oil (FO) or sunflower oil (SO) from 9 to 18 months of age. Before and after the intervention, we assessed BP, erythrocyte n-3 LCPUFA, plasma lipid profile, insulin, and glucose in addition to functional single nucleotide polymorphisms in FADS, PPARG2, and COX2. At 18 months, plasma TAG was lower in the FO compared with SO group (p = 0.014). This effect was modified by PPARG2-Pro12Ala, as TAG only decreased among heterozygotes. FO supplemented PPARG2 Pro12Ala heterozygotes also had decreased plasma glucose compared with the SO group (p = 0.043). The effect of FO on mean arterial BP at 18 months was gender dependent (p = 0.020) and reduced in boys only (p = 0.028). Diastolic BP was, however, lower among all FO supplemented homozygous COX2-T8473C variant allele carriers compared with the SO group (p = 0.001). In conclusion, our results confirm that FO supplementation in late infancy reduces TAG and BP and indicates that the effects are mediated via peroxisome proliferator-activated receptor-γ and cyclooxygenase-2. Furthermore, FO reduced plasma glucose only in PPARG2 heterozygotes.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0396-4) contains supplementary material, which is available to authorized users.  相似文献   

14.
Abstract

The relationship between peroxisome proliferator-activated receptor gamma (PPARγ) Pro12Ala gene polymorphism and type 2 diabetic nephropathy (T2DN) risk in Asians is still unclear. This study was performed to evaluate if there was an association between the PPARγ Pro12Ala gene polymorphism and T2DN risk in Asians using meta-analysis. The relevant reports were searched and identified from PubMed, Cochrane Library and CBM-disc (China Biological Medicine Database) on 1 October 2013, and eligible studies were included and synthesized. Ten reports were recruited into this meta-analysis for the association of the PPARγ Pro12Ala gene polymorphism with T2DN risk. The Pro12Ala gene polymorphism in the Asian population was shown to be not associated with T2DN risk (Ala/Ala: OR?=?0.67, 95% CI: 0.22–2.00, p?=?0.47; Pro/Pro: OR?=?1.77, 95% CI: 0.82–1.65, p?=?0.39; Ala allele: OR?=?0.74, 95% CI: 0.47–1.16, p?=?0.19). In the sensitivity analysis according to Hardy-Weinberg equilibrium (HWE), the control source from hospital, the control source from population, the genotyping methods using PCR-RFLP, the genotyping methods using Taqman, sample size of case (≥100), the association of the PPARγ Pro12Ala gene polymorphism with T2DN risk was also not found. Interestingly, in the sensitivity analysis according to sample size of case (<100), Ala allele was associated with T2DN risk, but not the Pro/Pro genotype. However, the sample size for sensitivity analysis according to sample size of case (<100) was relatively small and therefore, the results should be interpreted with care. In conclusion, the PPARγ Pro12Ala gene polymorphism was not associated with T2DN risk in Asians. However, Ala allele was associated with T2DN risk when the sample size of case was less than 100. Nonetheless, additional studies are required to firmly establish a correlation between the PPARγ Pro12Ala gene polymorphism and T2DN risk in Asians.  相似文献   

15.
Free fatty acids (FFAs) are natural ligands of the PPARgamma2 receptor. FFA plasma concentration and composition may represent one of the factors accounting for high heterogeneity of conclusions concerning the effect of the Pro12Ala on BMI, insulin sensitivity or diabetes type 2 (DM2) susceptibility. Our objective was to investigate the relation and possible interactions between the Pro12Ala polymorphism and FFA status, metabolic markers, and body composition in 324 lean nondiabetic subjects (M/F: 99/225; age 32+/-11 years; BMI 23.9+/-4.0 kg/m(2)) with and without family history of DM2. Family history of DM2 was associated with lower % PUFA and slightly higher % MUFA. The presence of Pro12Ala polymorphism was not associated with fasting plasma FFA concentration or composition, anthropometric or metabolic markers of glucose and lipid metabolism in tested population. However, the interaction of carriership status with FFA levels influenced the basal glucose levels, insulin sensitivity and disposition indices, triglycerides, HDL-cholesterol and leptin levels, especially in women. The metabolic effects of 12Ala carriership were influenced by FFA levels - the beneficial role of 12Ala was seen only in the presence of low concentration of plasma FFA. Surprisingly, a high PUFA/SFA ratio was associated with lower insulin sensitivity, the protective effect of 12Ala allele was apparent in subjects with family history of DM2. On the basis of our findings and published data we recommend the genotyping of diabetic patients for Pro12Ala polymorphism of the PPARgamma2 gene before treatment with thiazolidinediones and education of subjects regarding diet and physical activity, which modulate metabolic outcomes.  相似文献   

16.

Background

PPARγ and RBP4 are known to regulate lipid and glucose metabolism and insulin resistance. The influences of PPARγ (C1431T and Pro12Ala) and RBP4 (−803GA) polymorphisms on metabolic syndrome in HIV-infected patients receiving anti-retroviral therapy were examined in this study.

Materials and Methods

A cross-sectional study of HIV-1 infected adults with antiretroviral therapy for more than one year in the National Cheng Kung University Hospital was conducted. The gene polymorphisms were determined by quantitative PCR.

Results

Ninety-one patients were included in the study. Eighty-two (90.1%) patients were males with a mean age of 44.4 years. For the C1431T polymorphism in PPARγ, while patients with the T allele (48.4%) had trends toward lower rate of hypertriglyceridemia, the borderline significance together with insignificant power did not support the protective effect of the T allele against development of hypertriglyceridemia. For the Pro12Ala polymorphism in PPARγ, although patients with the Pro/Ala genotype (8.8%) had a higher level of serum LDL (138.0 vs. 111.5 mg/dl, P = 0.04) and trends toward higher rates of hypercholesterolemia and serum LDL>110 mg/dl, these variables were found to be independent of the Pro/Ala genotype in the multivariate analysis. For the −803GA polymorphism in RBP4, patients with the A allele (23.1%) more often had insulin resistance (HOMA>3.8; 33.3 vs. 8.7%, P = 0.01) and more often received anti-hypoglycemic drugs (14.3 vs. 1.4%, P = 0.04). The detrimental effect of the A allele in RBP4 −803GA polymorphism on development of insulin resistance was supported by the multivariate analysis adjusting for covariates.

Conclusion

The impacts of PPARγ C1431T and Pro12Ala polymorphisms on metabolism in HIV-infected patients are not significant. RBP4 −803GA polymorphism has increased risk of insulin resistance in HIV-infected patients with anti-retroviral therapy.  相似文献   

17.
Conjugated linoleic acids (CLAs) are natural PPARγ ligands, which showed conflicting effects on metabolism in humans. We examined metabolic effects of different isomers of CLA in subjects with PPARγ2 Pro12Ala polymorphisms. A total of 35 men underwent four intervention periods in a crossover study design: subjects with either genotypes received c9, t11 CLA or t10, c12 CLA, a commercially available 1:1 mix of both isomers or reference oil (linoleic acid (LA)). Adipocytokines, insulin, glucose and triglycerides were assessed in the fasting state and after a standardized mixed meal. Across all genotypes, there was a significant (p = 0.025) CLA treatment effect upon postprandial (pp) HOMA-IR values, with c9, t11 CLA and CLA isomer mix improving, but t10, c12 CLA isomer worsening. In Ala12Ala subjects, the t10, c12 isomer caused weight gain (p = 0.03) and tended to increase postprandial insulin levels (p = 0.05). In Pro12Pro subjects, t10, c12 resulted in reduction in waist circumference (p = 0.03). The comparison of the different genotype groups revealed statistically different changes in fasting and postprandial insulin, HOMA-IR and leptin after intervention. c9, t11 CLA and the commercial CLA mix showed beneficial effects on insulin sensitivity compared with LA, while t10, c12 CLA adversely affects body weight and insulin sensitivity in different PPAR genotypes. CLA isomers have different effects on metabolism in Ala and Pro carriers.  相似文献   

18.
The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma2 (PPARgamma2) gene is associated with reduced type 2 diabetes risk and increased insulin sensitivity. It is possible that the oxidative shift from lipid to glucose as a fuel is more efficient in Ala allele carriers. To test this hypothesis, we examined carbohydrate and lipid oxidation by indirect calorimetry in lean, glucose tolerant subjects with (X/Ala, n = 25) and without the Pro12Ala polymorphism (Pro/Pro, n = 73) basally and after insulin stimulation during a 2-hour eugylcaemic hyperinsulinaemic clamp. Insulin sensitivity was non-significantly greater in X/Ala (0.13 +/- 0.01 micromol/kg/min/pM) than in Pro/Pro (0.12 +/- 0.01 micromol/kg/min/pM, p = 0.27). Basally, there were no lipid nor carbohydrate oxidation differences between the groups. Interestingly, the decrease in lipid oxidation during insulin stimulation was significantly greater in male X/Ala (- 0.51 +/- 0.06 mg/kg/min) than in male Pro/Pro (- 0.35 +/- 0.04 mg/kg/min, p = 0.03). No difference was observed in females. Analogously, the change in carbohydrate oxidation in male X/Ala (1.34 +/- 0.2 mg/kg/min) was significantly greater than in male Pro/Pro (1.03 +/- 0.12 mg/kg/min, p = 0.05). The respiratory quotient increased more, but not significantly more, in male X/Ala (0.11 +/- 0.01) than in male Pro/Pro subjects (0.08 +/- 0.01, p = 0.08) but similarly in females. These results indicate that the mechanism by which the Ala allele improves insulin sensitivity might involve enhanced suppression of lipid oxidation permitting more efficient (predominantly non-oxidative) glucose disposal. It is unclear why this could be demonstrated only in males, although gender differences in substrate oxidation are well documented.  相似文献   

19.
The distribution of Pro12Ala polymorphism is studied for the first time in the Ukrainian population, using 39 healthy individuals and 42 male subjects aged 40–65 with symptoms of the metabolic syndrome. The frequency of the allele 12Ala is found to be 27.4%, that of the Pro12Ala genotype, 32.6%, and that of the Ala12Ala genotype, 4.4%. These figures are close to the results found for the Czech population. Among individuals with the metabolic syndrome the frequency of the allele 12Ala is reliably less, or 18.4%, which corresponds to previously established data on individuals with Type 2 diabetes mellitus. A trend towards increasing body mass index among individuals with the 12Ala allele is found in the group of patients with symptoms of the metabolic syndrome.  相似文献   

20.
Objective: The main purpose of this study was to investigate associations of single‐nucleotide polymorphisms (SNPs) in the adipocyte C1q and collagen domain‐containing (ACDC) gene and its regulator, the nuclear peroxisome proliferator‐activated receptor (PPAR)‐γ gene, with body fat mass and its topographical distribution in postmenopausal women. Research Methods and Procedures: Participants were 1501 healthy women, 60 to 85 years old, who were genotyped for four SNPs in the ACDC gene (−11391G/A, −11377C/G, +45T/G, +276G/T) and the Pro12Ala SNP in the PPAR‐γ gene. Total body fat mass and the central to peripheral fat mass ratio (CFM/PFM ratio) were measured using DXA. Adiponectin and homeostasis model assessment of insulin resistance were measured in 287 subjects. Results: The −11377C/G SNP was associated with adiponectin (p < 0.001) and the CFM/PFM ratio (p = 0.005); the G allele being associated with low adiponectin and high CFM/PFM ratio. Similar associations of adiponectin (p = 0.0001) and the CFM/PFM ratio (p = 0.002) characterized the 1_2 (G_G) promoter haplotype (11391G/A_−11377C/G). Genotype variation of SNP Pro12Ala was associated with total body fat mass (p = 0.04); women with GG being the most obese (p = 0.01). The Ala/Ala (GG) genotype of Pro12Ala SNP interacted with the CC genotype of SNP‐11377C/G in the determination of BMI (p = 0.001), when analyzed using a codominant model. Discussion: Polymorphisms in the ACDC gene are associated with body fat distribution, whereas the Pro12Ala polymorphism in PPAR‐γ is associated with overall adiposity, apparently in interaction with an ACDC promoter SNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号