首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be “critical” for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.  相似文献   

2.
3.
Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing dependent plasticity and synaptic scaling with an intrinsic plasticity rule that regulates neuronal excitability to maximize information transmission. We show that a stochastically spiking neuron learns one independent component for inputs encoded either as rates or using spike-spike correlations. Furthermore, different independent components can be recovered, when the activity of different neurons is decorrelated by adaptive lateral inhibition.  相似文献   

4.
A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span) and the rapidity of action potential initiation (the onset rapidity). This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley model is able to accurately describe the behavior of this system.  相似文献   

5.
The pattern of neuronal spiking of cortical neurons was investigated in an awake nonimmobilized rabbit. Thecharacteristics of the interspike intervals (total numberof intervals, mean interval, mean-square deviation) and of the burst (group) activity (burst number, mean spikefrequency in a burst, mean spike number for a burst, meanburst duration) were considered. Nonlinear relationshipbetween the values of mean interspike intervals and thenumber of spike bursts was found. A number of functionswere applied to describe the observed phenomena. On thebasis of regression analysis two populations of corticalneurons with distinct neuronal spiking patterns wereidentified. Bursts occur at a higher rate in one populationthan the other, although both populations exhibit burstsand are otherwise indistinguishable.  相似文献   

6.
7.
8.
Single-neuron models are useful not only for studying the emergent properties of neural circuits in large-scale simulations, but also for extracting and summarizing in a principled way the information contained in electrophysiological recordings. Here we demonstrate that, using a convex optimization procedure we previously introduced, a Generalized Integrate-and-Fire model can be accurately fitted with a limited amount of data. The model is capable of predicting both the spiking activity and the subthreshold dynamics of different cell types, and can be used for online characterization of neuronal properties. A protocol is proposed that, combined with emergent technologies for automatic patch-clamp recordings, permits automated, in vitro high-throughput characterization of single neurons.  相似文献   

9.
The dynamics of a network of randomly connected inhibitory linear integrate and fire (LIF) neurons (with a floor for the depolarization), in the presence of stochastic external afferent input, is considered in various parameter regimes of the neurons and of the network. Applying a technique recently introduced by Brunel and Hakim, we classify the regimes in which such a network has stable stationary states and in which spike emission rates oscillate. In the vicinity of the bifurcation line, the oscillation frequency and its amplitude are computed and compared with simulations. As for leaky IF neurons, the space of parameters can be compacted into two. Yet despite significant technical differences between the two models, related to both the different dynamics of the depolarization as well as to the different boundary conditions, the qualitative behavior is rather similar. The significance of LIF neurons and of the differences with leaky IF neurons is discussed.  相似文献   

10.
Individual neurons in the suprachiasmatic nucleus (SCN), the master biological clock in mammals, autonomously produce highly complex patterns of spikes. We have shown that most (~90%) SCN neurons exhibit truly stochastic interspike interval (ISI) patterns. The aim of this study was to understand the stochastic nature of the firing patterns in SCN neurons by analyzing the ISI sequences of 150 SCN neurons in hypothalamic slices. Fractal analysis, using the periodogram, Fano factor, and Allan factor, revealed the presence of a 1/f-type power-law (fractal) behavior in the ISI sequences. This fractal nature was persistent after the application of the GABAA receptor antagonist bicuculline, suggesting that the fractal stochastic activity is an intrinsic property of individual SCN neurons. Based on these physiological findings, we developed a computational model for the stochastic SCN neurons to find that their stochastic spiking activity was best described by a gamma point process whose mean firing rate was modulated by a fractal binomial noise. Taken together, we suggest that SCN neurons generate temporal spiking patterns using the fractal stochastic point process.Action Editor: Carson C. Chow  相似文献   

11.
12.
13.
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.  相似文献   

14.
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.  相似文献   

15.
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.  相似文献   

16.
采用原代培养的大鼠纹状体神经元,施予43℃热环境处理1h。用气,质联用的方法测定细胞膜和细胞中的脂肪酸水平,主要是花生四烯酸的水平;荧光偏振法测细胞膜流动性,用[^3H]花生四烯酸大肠杆菌膜检测细胞内磷脂酶A2活性。发现细胞内大量存在的脂肪酸水平在热环境处理前后没有明显差别,而花生四烯酸的水平明显升高。热处理造成细胞膜的流动性明显降低,同时明显增加了神经元内磷脂酶A2的活性。表明热处理明显影响神经元细胞膜的流动性和磷脂代谢,进而影响细胞膜的功能,而热对细胞膜的损伤作用可能就是热致神经元损伤的重要事件。  相似文献   

17.
In the squid giant axon, Sjodin and Mullins (1958), using 1 msec duration pulses, found a decrease of threshold with increasing temperature, while Guttman (1962), using 100 msec pulses, found an increase. Both results are qualitatively predicted by the Hodgkin-Huxley model. The threshold vs. temperature curve varies so much with the assumptions made regarding the temperature-dependence of the membrane ionic conductances that quantitative comparison between theory and experiment is not yet possible. For very short pulses, increasing temperature has two effects. (1) At lower temperatures the decrease of relaxation time of Na activation (m) relative to the electrical (RC) relaxation time favors excitation and decreases threshold. (2) For higher temperatures, effect (1) saturates, but the decreasing relaxation times of Na inactivation (h) and K activation (n) factor accommodation and increased threshold. The result is a U-shaped threshold temperature curve. R. Guttman has obtained such U-shaped curves for 50 µsec pulses. Assuming higher ionic conductances decreases the electrical relaxation time and shifts the curve to the right along the temperature axis. Making the conductances increase with temperature flattens the curve. Using very long pulses favors effect (2) over (1) and makes threshold increase monotonically with temperature.  相似文献   

18.
19.
1. The potential functions of the microtubule-associated protein tau have been expanded by the recent demonstration of its interaction with the plasma membrane. Since the association of tau with microtubules is regulated by phosphorylation, herein we examine whether or not the association of tau with the plasma membrane is also regulated by phosphorylation.2. A range of tau isoforms migrating from 46 to 64 kDa was associated with crude particulate fractions derived from SH-SY-5Y human neuroblastoma cells, and were retained during the initial stages of plasma membrane purification. During the extensive washing utilized in purification of the plasma membrane, portions of each of these isoforms were depleted from the resultant purified membrane. Immunoblot analysis with phospho-dependent and -independent antibodies revealed selective depletion of phospho isoforms during membrane washing. This effect was more pronounced for the slowest-migrating (64-kDa) tau isoform.3. This putative influence of phosphorylation on the association of tau with the plasma membrane was further probed by transfection of SH-SY-5Y human neuroblastoma cells with a tau construct that could associate with the plasma membrane but not with microtubules. Treatment with phorbol ester or calcium ionophore, both of which increased phospho-tau levels within the cytosol and plasma membrane, was accompanied by the dissociation of this tau construct from the membrane.4. These data indicate that phosphorylation regulates the association with the plasma membrane. Dissociation from the membrane by phosphorylation may place tau at risk for hyperphosphorylation and ultimate PHF formation in a manner previously considered for tau dissociated from microtubules.  相似文献   

20.
Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号