首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigated the effects of PAR-2 activation on N-type Ca2+ currents (ICa-N) in isolated neurons of the celiac ganglion (CG), which is involved in the sympathetic regulation of mesenteric artery vascular tone. PAR-2 agonists irreversibly diminished voltage-gated Ca2+ currents (ICa), measured using the patch-clamp method, in rat CG neurons, whereas thrombin had little effect on ICa. This PAR-2-induced inhibition was almost completely prevented by ω-CgTx, a potent N-type Ca2+ channel blocker, suggesting the involvement of N-type Ca2+ channels in PAR-2-induced inhibition. In addition, PAR-2 agonists inhibited ICa–N in a voltage-independent manner in rat CG neurons. Moreover, PAR-2 agonists reduced action potential (AP) firing frequency as measured using the current-clamp method in rat CG neurons. This inhibition of AP firing induced by PAR-2 agonists was almost completely prevented by ω-CgTx, indicating that PAR-2 activation may regulate the membrane excitability of peripheral sympathetic neurons through modulation of N-type Ca2+ channels. In conclusion, the present findings demonstrate that the activation of PAR-2 suppresses peripheral sympathetic outflow by modulating N-type Ca2+ channel activity, which appears to be involved in PAR-2-induced hypotension, in peripheral sympathetic nerve terminals.  相似文献   

2.
3.
Forskolin has become an invaluable tool for exploring the involvement of cyclic AMP in a variety of cellular functions. The diterpine directly activates the catalytic subunit of adenylate cyclase, causing a marked increase in cyclic AMP content. Because of this well-characterized action, practically all the observed effects of forskolin are commonly attributed to cyclic AMP-dependent processes. We show here that forskolin exerts a neurotrophic action that is almost identical to that of nerve growth factor (NGF) and phorbol 12,13-dibutyrate (PDB) but independent of cyclic AMP. Sympathetic neurons of the chick embryo supported in culture for 2 days by NGF, forskolin plus 3-isobutyl-1-methylxanthine (IBMX), or PDB had almost identical levels of cyclic AMP (between 9 and 12 pmol/mg protein). Neurons supported in culture for 2 days by NGF or PDB when challenged with forskolin plus IBMX showed almost a 15-fold increase in cyclic AMP, but those supported by forskolin plus IBMX and then exposed to the same combination of drugs did not show an increase in cyclic AMP, exhibiting a marked down-regulation. Exposure of neurons to forskolin for 2 h was ineffective in supporting long-term survival, suggesting that an initial increase in cyclic AMP formation is not sufficient but the continued presence of the drug is essential for survival. Effects of forskolin on the survival of these neurons could be observed even in the presence of dideoxyadenosine, and inhibitor of adenylate cyclase. Neurons supported by PDB for 2 days in culture when exposed to NGF for the first time did not show any increase in cyclic AMP, providing clear evidence that NGF does not affect this second messenger in its target cells. Similarly, neurons supported by NGF for 2 days when exposed to PDB did not show an increase in cyclic AMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary Cultured ovine oligodendrocytes (OLGs) express a number of voltage-dependent potassium currents after they attach to a substratum and as they begin to develop processes. At 24–48 hours following plating, an outward potassium current can be identified that represents a composite response of a rapidly inactivating component and a steady-state or noninactivating component. After 4–7 days in culture, OLGs also develop an inward rectifier current. We studied the effects of forskolin and phorbol 12-myristate 13-acetate (PMA) on OLG outward currents. These compounds are known to alter the myelinogenic metabolism of OLGs. PMA, an activator of protein kinase C (PK-C), has been shown to enhance myelin basic protein phosphorylation while forskolin acting on adenylate cyclase, and thereby increasing cAMP, inhibits it. Both forskolin and PMA increase the phosphorylation of 23-cyclic nucleotide phosphodiesterase, an OLG/myelin protein. We found that forskolin decreased the steady-state outward current at 120 mV by 10% at 100nm, and by 72% at 25 m from a holding potential of –80 mV. The time course of inactivation of the peak currents was decreased, affecting both the fast and slow time constants. There was no significant change in the steady-state parameters of current activation and inactivation. The effect of forskolin was attenuated when the adenylate cyclase inhibitor adenosine (2mm) was present in the intracellular/pipette filling solution. The results of PMA experiments were similar to those obtained with forskolin. Whereas the amplitude of the currents in the presence of PMA was reduced by 28% at 1.5nm and 60% and 600nm, the decay phase of the peak currents was less affected. The PMA effect could still be seen when the intracellular Ca2+ was reduced to 10nm with 5mm BAPTA, but was inhibited when the cells were pre-exposed to 50 m psychosine, a PK-C inhibitor. It is postulated that the potassium currents in OLG can be physiologically modulated by two distinct second-messenger systems, perhaps converging at the level of a common phosphorylated enzyme or regulatory protein.  相似文献   

5.
神经元能够将不同时空模式的突触输入转化为时序精确的动作电位输出,这种灵活、可靠的信息编码方式是神经集群在动态环境或特定任务下产生所需活动模式的重要基础。动作电位的产生遵循全或无规律,只有当细胞膜电压达到放电阈值时,神经元才产生动作电位。放电阈值在细胞内和细胞间具有高度可变性,具体动态依赖于刺激输入和放电历史。特别是,放电阈值对动作电位起始前的膜电压变化十分敏感,这种状态依赖性产生的生物物理根源包括Na+失活和K+激活。在绝大多数神经元中,动作电位的触发位置是轴突起始端,这个位置处的阈值可变性是决定神经元对时空输入转化规律的关键因素。但是,电生理实验中动作电位的记录位置却通常是胞体或近端树突,此处的阈值可变性高于轴突起始端,而其产生的重要根源是轴突动作电位的反向传播。基于胞体测量的相关研究显示,放电阈值动态能够增强神经元的时间编码、特征选择、增益调控和同时侦测能力本文首先介绍放电阈值的概念及量化方法,然后详细梳理近年来国内外关于放电阈值可变性及产生根源的研究进展,在此基础上归纳总结放电阈值可变性对神经元编码的重要性,最后对未来放电阈值的研究方向进行展望。  相似文献   

6.
7.
The generation of cell lines in the sympathoadrenal lineage has greatly facilitated our understanding of how precursor cells that do not respond to NGF give rise to mature NGF-dependent neurons. The neuronal developmental pathway in this lineage has been worked out by studying both primary precursor cells in culture and the v-myc-immortalized MAH cell line. MAH cells were established by retroviral infection of immunoisolated rat sympathoadrenal precursor cells. These cells have many of the characteristics of primary progenitor cells including neural precursor morphology, antigenic profile, and response to growth factors. MAH cells are able to recapitulate sympathetic development, giving rise to mature, postmitotic, NGF-dependent neurons. These cells have provided a model system for studying the factors, receptors, and modulating influences that play a role in the development of sympathetic neurons.  相似文献   

8.
Wei  Siqi  Chang  Shuyang  Dong  Yue  Xu  Linping  Yuan  Xiaocui  Jia  Hong  Zhang  Jun  Liang  Lingli 《Neurochemical research》2021,46(3):504-512
Neurochemical Research - Electro-acupuncture (EA) has been used for clinic analgesia for many years. However, its mechanisms are not fully understood. We recently reported that AXL, a tyrosine...  相似文献   

9.
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.  相似文献   

10.
The transient K+ current (IK(A)) affects the rate of repetitive action potentials. The whole-cell patch-clamp technique was applied to cultured Drosophila neurons derived from embryonic neuroblasts. IK(A) was measured from neurons before and after application of 0.1 mM copper to the external saline. IK(A) was smaller in the copper-containing saline (12.0 +/- 1.6 pA) than in the control saline (37 +/- 6.5 pA). Activation and inactivation of IK(A) were unchanged by copper. These results suggest that copper can influence neuronal excitability and may affect neuronal function.  相似文献   

11.
12.
K+ channel gating currents are usually measured in the absence of permeating ions, when a common feature of channel closing is a rising phase of off-gating current and slow subsequent decay. Current models of gating invoke a concerted rearrangement of subunits just before the open state to explain this very slow charge return from opening potentials. We have measured gating currents from the voltage-gated K+ channel, Kv1.5, highly overexpressed in human embryonic kidney cells. In the presence of permeating K+ or Cs+, we show, by comparison with data obtained in the absence of permeant ions, that there is a rapid return of charge after depolarizations. Measurement of off-gating currents on repolarization before and after K+ dialysis from cells allowed a comparison of off-gating current amplitudes and time course in the same cells. Parallel experiments utilizing the low permeability of Cs+ through Kv1.5 revealed similar rapid charge return during measurements of off-gating currents at ECs. Such effects could not be reproduced in a nonconducting mutant (W472F) of Kv1.5, in which, by definition, ion permeation was macroscopically absent. This preservation of a fast kinetic structure of off-gating currents on return from potentials at which channels open suggests an allosteric modulation by permeant cations. This may arise from a direct action on a slow step late in the activation pathway, or via a retardation in the rate of C-type inactivation. The activation energy barrier for K+ channel closing is reduced, which may be important during repetitive action potential spiking where ion channels characteristically undergo continuous cyclical activation and deactivation.  相似文献   

13.
Optimal use of patient-derived, induced pluripotent stem cells for modeling neuronal diseases is crucially dependent upon the proper physiological maturation of derived neurons. As a strategy to develop defined differentiation protocols that optimize electrophysiological function, we investigated the role of Ca2+ channel regulation by astrocyte conditioned medium in neuronal maturation, using whole-cell patch clamp and Ca2+ imaging. Standard control medium supported basic differentiation of induced pluripotent stem cell-derived neurons, as assayed by the ability to fire simple, single, induced action potentials. In contrast, treatment with astrocyte conditioned medium elicited complex and spontaneous neuronal activity, often with rhythmic and biphasic characteristics. Such augmented spontaneous activity correlated with astrocyte conditioned medium-evoked hyperpolarization and was dependent upon regulated function of L-, N- and R-type Ca2+ channels. The requirement for astrocyte conditioned medium could be substituted by simply supplementing control differentiation medium with high Ca2+ or γ-amino butyric acid (GABA). Importantly, even in the absence of GABA signalling, opening Ca2+ channels directly using Bay K8644 was able to hyperpolarise neurons and enhance excitability, producing fully functional neurons. These data provide mechanistic insight into how secreted astrocyte factors control differentiation and, importantly, suggest that pharmacological modulation of Ca2+ channel function leads to the development of a defined protocol for improved maturation of induced pluripotent stem cell-derived neurons.  相似文献   

14.
Human capillary endothelial cells (HCEC) in normal media contain noninactivating outwardly rectifying chloride currents, TEA-sensitive delayed rectifier K+ currents and an inward rectifier K+ current. Two additional ionic currents are induced in HCEC when the media are allowed to become conditioned: A Ca2+-activated K+ current (BKCA) that is sensitive to iberiotoxin is induced in 23.5% of the cells, a transient 4-AP-sensitive K+ current (A current) is induced in 24.7% of the cells, and in 22.3% of the cells both the transient and BKCA currents are coinduced. The EC50 for Ca2+ activation of the BKCA current in HCEC from conditioned media is 213 nM. RNA message for BKCA (hSlo clone) is undetecable after PCR amplification in control cells but is seen in those from conditioned cells. The induction of BKCA current is not blocked by conditioning with inhibitors of nitric oxide synthase, cyclo-oxgenase or lypo-oxygenase pathways. Apparently the characteristics of human endothelial cells are highly malleable and can be easily modified by their local environment. Received: 21 May 1998/Revised: 23 September 1998  相似文献   

15.
We model spiking neurons in locus coeruleus (LC), a brain nucleus involved in modulating cognitive performance, and compare with recent experimental data. Extracellular recordings from LC of monkeys performing target detection and selective attention tasks show varying responses dependent on stimuli and performance accuracy. From membrane voltage and ion channel equations, we derive a phase oscillator model for LC neurons. Average spiking probabilities of a pool of cells over many trials are then computed via a probability density formulation. These show that: (1) Post-stimulus response is elevated in populations with lower spike rates; (2) Responses decay exponentially due to noise and variable pre-stimulus spike rates; and (3) Shorter stimuli preferentially cause depressed post-activation spiking. These results allow us to propose mechanisms for the different LC responses observed across behavioral and task conditions, and to make explicit the role of baseline firing rates and the duration of task-related inputs in determining LC response.  相似文献   

16.
Conditional Probability Analyses of the Spike Activity of Single Neurons   总被引:1,自引:0,他引:1  
With the objective of separating stimulus-related effects from refractory effects in neuronal spike data, various conditional probability analyses have been developed. These analyses are introduced and illustrated with examples based on electrophysiological data from auditory nerve fibers. The conditional probability analyses considered here involve the estimation of the conditional probability of a firing in a specified time interval (defined relative to the time of the stimulus presentation), given that the last firing occurred during an earlier specified time interval. This calculation enables study of the stimulus-related effects in the spike data with the time-since-the-last-firing as a controlled variable. These calculations indicate that auditory nerve fibers “recover” from the refractory effects that follow a firing in the following sense: after a “recovery time” of approximately 20 msec, the firing probabilities no longer depend on the time-since-the-last-firing. Probabilities conditional on this minimum time since the last firing are called “recovered probabilities.” The recovered probabilities presented in this paper are contrasted with the corresponding poststimulus time histograms, and the differences are related to the refractory properties of the nerve fibers.  相似文献   

17.
Vitamin E has been shown to have strong anticarcinogenic properties, including antioxidant characteristics, making it an ideal candidate for use in combination with immunotherapies that modify the tumor microenvironment. The tumor microenvironment contains immunosuppressive components, which can be diminished, and immunogenic components, which can be augmented by immunotherapies in order to generate a productive immune response. In the current study, we employ the α-tocopherol succinate isomer of vitamin E to reduce immunosuppression by myeloid derived suppressor cells (MDSCs) as well as adoptive transfer of antigen-specific CD8+ T cells to generate potent antitumor effects against the HPV16 E7-expressing TC-1 tumor model. We show that vitamin E alone induces necrosis of TC-1 cells and elicits antitumor effects in TC-1 tumor-bearing mice. We further demonstrate that vitamin E reverses the suppression of T cell activation by MDSCs and that this effect is mediated in part by a nitric oxide-dependent mechanism. Additionally, treatment with vitamin E reduces the percentage of MDSCs in tumor loci, and induces a higher percentage of T cells, following T cell adoptive transfer. Finally, we demonstrate that treatment with vitamin E followed by E7-specific T cell adoptive transfer experience elicits potent antitumor effects in tumor-bearing mice. Our data provide additional evidence that vitamin E has anticancer properties and that it has promise for use as an adjuvant in combination with a variety of cancer therapies.  相似文献   

18.
19.
20.
Ma Z  Liu T 《Neurochemical research》2012,37(7):1450-1456
The effects of myricetin on hypothalamic paraventricular nucleus (PVN) neurons in rats were investigated. By whole-cell patch clamp detection in hypothalamic brain slices, we showed that the action potential frequency in type-I PVN neurons dose-dependently decreased after myricetin treatment. Further studies demonstrated that myricetin may enhance potassium currents and shifts the voltage-dependence of activation of potassium currents to more negative potentials by 6.07 mV. Using calcium free/cadmium perfusion solution could reverse myricetin-induced enhancement of potassium currents in PVN neurons. These results suggested that inhibition of hypothalamic PVN neurons by myricetin might be attributed to the enhancement of potassium currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号