首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study both the hunting efficiency and the flexibility of their predatory behavior, solitary hunters of the trap-jaw ant Odontomachus opaciventris were offered small prey (termites, fruit flies and tenebrionid larvae), presenting different morphological or defensive characteristics. The monomorphic hunters showed a moderately flexible predatory behavior characterized by short capture sequences and a noteworthy efficiency of their mandible strike (76.7-100% of prey retrievals), even when presented with Nasutitermes soldiers. Contrary to most poneromorph ants, antennal palpation of the prey before the attack was always missing, no particular targeted region of the prey's body was preferred, and no 'prudent' posture was ever exhibited. Moreover, stinging was regularly performed on bulky, fast moving fruit flies, very scarcely with sclerotized tenebrionid larvae, but never occurred with Nasutitermes workers or soldiers despite their noxious chemical defense. These results suggest that, whatever the risk linked to potentially dangerous prey, O. opaciventris predatory strategy optimizes venom use giving top priority to the swiftness and strength of the lethal trap-jaw system used by hunters as first strike weapon to subdue rapidly a variety of small prey, ranging from 0.3 to 2 times their own body size and from 0.1 to 2 times their weight. Such risk-prone predatory behavior is likely to be related to the large size of O. opaciventris colonies where the death of a forager might be of lesser vital outcome than in small colony-size species.  相似文献   

2.
1. Antlions are opportunistic trap building predators that cannot control prey encounter. Their trap should ideally retain a great diversity of prey. However, building a single trap that captures many prey with varying characteristics can be challenging. 2. A series of five different ant species ranging from thin to large, of sizes ranging from 2.75 to 6.5 mm, and a mean weight ranging from 0.54 to 6.00 mg were offered in a random succession to antlions. The state of satiation of the antlions was controlled, and their mass and the depth of their pit were recorded. The reaction of antlion to the prey, the probability of capture as well as the time to escape were recorded. 3. The probability of an antlion reaction is an increasing function of the pit depth and a decreasing function of antlion mass. The probability of capture is highest for intermediate prey mass and is an increasing function of pit depth. The time to escape is a declining function of prey mass and an increasing function of pit depth. 4. There is an upper limit to prey mass given that large prey escape out of the pit. There is a lower limit to prey mass given the difficulty to apprehend the smallest, thin species. Consequently, there is a range of prey mass, corresponding to a medium‐sized ant of 2 mg, for which the pit functions best. The physics of insect locomotion on sandy slopes was identified as the key to understanding the functioning of antlion pits.  相似文献   

3.
Here we show that Daceton armigerum, an arboreal myrmicine ant whose workers are equipped with hypertrophied trap-jaw mandibles, is characterized by a set of unexpected biological traits including colony size, aggressiveness, trophobiosis and hunting behavior. The size of one colony has been evaluated at ca. 952,000 individuals. Intra- and interspecific aggressiveness were tested and an equiprobable null model used to show how D. armigerum colonies react vis-à-vis other arboreal ant species with large colonies; it happens that D. armigerum can share trees with certain of these species. As they hunt by sight, workers occupy their hunting areas only during the daytime, but stay on chemical trails between nests at night so that the center of their home range is occupied 24 hours a day. Workers tend different Hemiptera taxa (i.e., Coccidae, Pseudococcidae, Membracidae and Aethalionidae). Through group-hunting, short-range recruitment and spread-eagling prey, workers can capture a wide range of prey (up to 94.12 times the mean weight of foraging workers).  相似文献   

4.
Ants use their mandibles to manipulate many different objects including food, brood and nestmates. Different tasks require the modification of mandibular force and speed. Besides normal mandible movements the trap-jaw ant Odontomachus features a particularly fast mandible reflex during which both mandibles close synchronously within 3 ms. The mandibular muscles that govern mandible performance are controlled by four opener and eight closer motor neurons. During slow mandible movements different motor units can be activated successively, and fine tuning is assisted by co-activation of the antagonistic muscles. Fast and powerful movements are generated by the additional activation of two particular motor units which also contribute to the mandible strike. The trap-jaw reflex is triggered by a fast trigger muscle which is derived from the mandible closer. Intracellular recording reveals that trigger motor neurons can generate regular as well as particularly large postsynaptic potentials, which might be passively propagated over the short distance to the trigger muscle. The trigger motor neurons are dye-coupled and receive input from both sides of the body without delay, which ensures the synchronous release of both mandibles.  相似文献   

5.
In Oecophylla, an ant genus comprising two territorially dominant arboreal species, workers are known to (1) use anal spots to mark their territories, (2) drag their gaster along the substrate to deposit short-range recruitment trails, and (3) drag the extruded rectal gland along the substrate to deposit the trails used in long-range recruitment. Here we study an overlooked but important marking behavior in which O. longinoda workers first rub the underside of their mandibles onto the substrate, and then—in a surprising posture—tilt their head and also rub the upper side of their mandibles. We demonstrate that this behavior is used to recruit nestmates. Its frequency varies with the rate at which a new territory, a sugary food source, a prey item, or an alien ant are discovered. Microscopy analyses showed that both the upper side and the underside of the mandibles possess pores linked to secretory glands. So, by rubbing their mandibles onto the substrate, the workers probably spread a secretion from these glands that is involved in nestmate recruitment.  相似文献   

6.
In social insects behavioral consequences of shortened life expectancy include, among others, increased risk proneness and social withdrawal. We investigated the impact of experimental shortening of life expectancy of foragers of the ant Formica cinerea achieved by their exposure to carbon dioxide on the expression of rescue behavior, risky pro-social behavior, tested by means of two bioassays during which a single worker (rescuer) was confronted with a nestmate (victim) attacked by a predator (antlion larva capture bioassay) or immobilized by an artificial snare (entrapment bioassay). Efficacy of carbon dioxide poisoning in shortening life expectancy was confirmed by the analysis of ant mortality. Rescue behavior observed during behavioral tests involved digging around the victim, transport of the sand covering the victim, pulling the limbs/antennae/mandibles of the victim, direct attack on the antlion (in antlion larva capture tests), and snare biting (in entrapment tests). The rate of occurrence of rescue behavior was lower in ants with shortened life expectancy, but that effect was significant only in the case of the entrapment bioassay. Similarly, only in the case of the entrapment bioassay ants with shortened life expectancy displayed rescue behavior after a longer latency and devoted less time to that behavior than ants from the control groups. Our results demonstrated that in ant workers shortened life expectancy may lead to reduced propensity for rescue behavior, most probably as an element of the social withdrawal syndrome that had already been described in several studies on behavior of moribund ants and honeybees.  相似文献   

7.
Mutualistic species often associate with several partners that vary in the benefits provided. In some protective ant–plant mutualisms, ants vary in the extent at which they kill neighboring vegetation. Particularly, in acacia ants (Pseudomyrmex), the area around the host tree that ants keep free from vegetation (“clearings”) vary depending on the species. This study assessed whether interspecific variation in clearing size corresponds to workers biting on plant tissue of different thickness. As expected, workers from species making the largest clearings bit more often on thicker plant tissues than workers from species making smaller clearings. Because head shape affects mandible force, I also assessed whether pruning on thick tissue in mutualistic ant species or being a predator in non‐mutualistic species correlated with broader heads, which yield stronger mandible force. The species with the broader heads were non‐mutualistic predators or mutualistic pruners of thick tissues, which suggest that pruning neighboring vegetation in non‐predatory species demands force even when the ants do not kill prey with their mandibles. The findings reveal that clearing size variation in mutualistic ant partners of plants can also be observed at the level of individual decision‐making processes among workers, and suggest that head morphology could be a trait under selection in protective ant–plant mutualisms. Abstract in Spanish is available with online material.  相似文献   

8.
Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency, but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-body coordination using mutants, morphants, and transgenic approaches.  相似文献   

9.
Predators use a variety of strategies for capturing prey. Trap‐building predators can save on searching and encountering costs by investing in the construction and maintenance of traps such as webs and pits. However, what to do with partially consumed prey poses a potential problem. Antlion larvae (Myrmeleon acer) catch ants in conical pits, and dispose of partially consumed carcasses by flicking them a short distance away. We tested whether this prey‐disposal behaviour affects the effectiveness of antlion pits. We observed ant behaviour around artificially constructed pits and compared falls into pits with clean margins to those with conspecific ant carcasses or control objects around the pit edge. The presence of objects near pits affected the behaviour of live ants, and reduced the effectiveness of pits. Live ants spent the most time examining fresh ant carcasses, but the presence of any object near pits deterred pitfalls. Ants fell into pits significantly more often when pit edges were clean, suggesting that antlions could incur a prey capture cost from flicking carcasses from pits as well as from the accumulation of other debris around pit margins.  相似文献   

10.
We studied the predatory behavior of seven species of the genusLeptogenys from Mexico and Cameroon. The ants of this genus are armed with long, thin, curved mandibles articulated at the extreme corners of the anterior margin of the head, permitting them easily to seize oniscoid isopods, the obligate or the principal prey of mostLeptogenys species. Workers hunt these prey, which are able to roll themselves up, solitarily. Foraging behavior comprises sequences of up to eight activities. The prey can be seized by the body (rolled up or not), or alternatively by the edge of the shell, then turned over and stung on the ventral face. A relationship between the mandible size of the workers and the handling method permitted us to established that the phase “seizure by the edge of the shell” (compared to grasping the prey by the body) was more frequent as the prey size increased or the mandible length of the workers decreased. The rate of prey escape followed the same pattern. When a prey escaped, workers reacted by using a local searching or “reserve” behavior: they moved by increasing both sinuosity and speed. Recruitment occurred mainly after a worker found a group of prey or a large prey.L. mexicana are attractive at a distance to the isopods Bathytropidae living in the same natural environment. As a consequence, prey capture is possible without foraging for this species.  相似文献   

11.
Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods.  相似文献   

12.
Fluid intake rates in ants correlate with their feeding habits   总被引:2,自引:0,他引:2  
This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.  相似文献   

13.
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.  相似文献   

14.
Odontomachus paleomyagra sp. nov. is described from the Early Miocene of the Most Basin (Czech Republic) on the basis of a single-winged female, representing one of the rare reports of fossil Odontomachini. The new species is separated easily from other trap-jaw ant species groups by differences in mandibular morphology (without denticles on the inner side) and distributional occurrence. The evolutionary and biogeographic history of the Odontomachini is briefly discussed.  相似文献   

15.
Plant-ants live in a mutualistic association with host plants known as “myrmecophytes” that provide them with a nesting place and sometimes with extra-floral nectar (EFN) and/or food bodies (FBs); the ants can also attend sap-sucking Hemiptera for their honeydew. In return, plant-ants, like most other arboreal ants, protect their host plants from defoliators. To satisfy their nitrogen requirements, however, some have optimized their ability to capture prey in the restricted environment represented by the crowns of trees by using elaborate hunting techniques. In this study, we investigated the predatory behavior of the ant Azteca andreae which is associated with the myrmecophyte Cecropia obtusa. We noted that up to 8350 ant workers per tree hide side-by-side beneath the leaf margins of their host plant with their mandibles open, waiting for insects to alight. The latter are immediately seized by their extremities, and then spread-eagled; nestmates are recruited to help stretch, carve up and transport prey. This group ambush hunting technique is particularly effective when the underside of the leaves is downy, as is the case for C. obtusa. In this case, the hook-shaped claws of the A. andreae workers and the velvet-like structure of the underside of the leaves combine to act like natural Velcro® that is reinforced by the group ambush strategy of the workers, allowing them to capture prey of up to 13,350 times the mean weight of a single worker.  相似文献   

16.
Social predation—when groups of predators coordinate actions to find and capture prey—is a common tactic among mammals but comparatively rare in fishes. We report the unexpected social predation by electric eels, an otherwise solitary predator in the Amazon rainforest. Observations made in different years and recorded on video show electric eels herding, encircling shoals of small nektonic fishes, and launching joint predatory high‐voltage strikes on the prey ball. These findings challenge the hypothesis that electric eels may have a single foraging strategy and extend our knowledge on social predation to an organism that employs high‐voltage discharge for hunting. Thereby offering a novel perspective for studies on the evolutionary interplay between predatory and escape tactics.  相似文献   

17.
About 10,000 arthropods live as ants'' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea “predatory species” directly feed on the ant larvae, while those of “cuckoo species” are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony''s hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites'' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens'' than to workers'' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry.  相似文献   

18.
Plectroctena minor workers have long mandibles that can snap and deliver a sharp blow to intruders or prey, stunning or killing them. Encounters between homocolonial P. minor workers separated for 24 h or 15 days never resulted in snapping, while this behaviour was always noted during encounters between heterocolonial workers on neutral arenas or on the territory of a colony. In the latter case, only the aliens, that generally tried to escape, were snapped at. Snapping also occurred during encounters with workers belonging to sympatric ponerine species. During predation, the percentages of snapping varied according to prey nature, suggesting prey discrimination. Termite soldiers were always snapped at, while other prey were more often snapped close to rather than far from the nest entrances, indicating an intermingling of territorial aggressiveness and predatory behaviour. We discuss the adaptive value of snapping for hunting in galleries.  相似文献   

19.
This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The 'ant-dropping' behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes.  相似文献   

20.
Jumping performance is relevant for lizards in many ecological contexts and might be favoured during the colonization of structurally complex habitats. Although ground-dwelling lizards use jumps to overcome small obstacles in their natural environments, jumping capacity has been mostly studied in arboreal species. Here, we analysed the evolution of jumping behaviour and performance in lizards from eight ground-dwelling species of Tropidurinae attempting to cross obstacles of different heights in a jumping track, both when undisturbed and under continuous stimulation. To establish ecological correlates with habitat complexity, individuals from two contrasting Brazilian habitats, the arid Caatingas (sand species) and the savannah-like Cerrados (rock species), were compared. Rock species jumped more often and crossed higher obstacles than sand ones in both tests, and performed more vertical than horizontal jumps. Although sand species performed less jumps, they were more successful at crossing the obstacles presented in comparison with rock species. Phylogenetic analyses confirmed these findings and demonstrated a large divergence in jumping capacity between sister-species from different habitats. Therefore, the differences in propensity and endurance for jumping activity appear to be independent of phylogenetic relationships in Tropidurinae and likely reflect an adaptation to the contrasting environments inhabited. The ecological implications of these findings are discussed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 393–402.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号