首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. One use of transfected B. bovis parasites may be as a vaccine delivery platform. Previous transfection methods for B. bovis were limited by single expression sites and intracellular expression of transfected antigens. This study describes a novel transfection system in which two exogenous genes are expressed: one for selection and the other for a selected antigen designed to be delivered to the surface of the parasites. The strategy for duplicating the number of transfected genes was based on the use of the putative bidirectional promoter of the B. bovis 1.4 Kb ef-1α intergenic region. The ability of this region to regulate two independent expression sites was demonstrated using a luciferase assay on transiently transfected B. bovis parasites and then incorporated into a stable transfection plasmid to control independent expression of the selectable marker GFP-BSD and another gene of interest. A chimeric gene was synthetized using sequences from the protective B-cell epitopes of Rhipicephalus microplus tick antigen Bm86 along with sequences from the surface exposed B. bovis major surface antigen-1. This chimeric gene was then cloned into the additional expression site of the transfection plasmid. Transfection of the B. bovis Mo7 strain with this plasmid resulted in stable insertion into the ef-1α locus and simultaneous expression of both exogenous genes. Expression of the Bm86 epitopes on the surface of transfected merozoites was demonstrated using immunofluorescence analyses. The ability to independently express multiple genes by the inclusion of a bidirectional promoter and the achievement of surface expression of foreign epitopes advances the potential of transfected B. bovis as a future vaccine delivery platform.  相似文献   

2.
A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.berghei followed by in vivo selection with the prodrug 5-fluorocytosine (5-FC). The combination of yfcu and a positive selectable marker was used to first achieve positive selection of mutant parasites with a disrupted gene in a conventional manner. Thereafter through negative selection using 5-FC, mutants were selected where the disrupted gene had been restored to its original configuration as a result of the excision of the selectable markers from the genome through homologous recombination. This procedure was carried out for a Plasmodium gene (p48/45) encoding a protein involved in fertilization, the function of which had been previously implied through gene disruption alone. Such reversible recombination can therefore be employed for both the rapid analysis of the phenotype by targeted disruption of a gene and further associate phenotype and function by genotype restoration through the use of a single plasmid and a single positive selectable marker. Furthermore the negative selection system may also be adapted to facilitate other procedures such as ‘Hit and Run’ and ‘vector recycling’ which in principle will allow unlimited manipulation of a single parasite clone. This is the first demonstration of the general use of yFCU in combination with a positive selectable marker in reverse genetics approaches and it should be possible to adapt its use to many other biological systems.  相似文献   

3.
4.
Wildlife are an important component in the vector-host-pathogen triangle of livestock diseases, as they maintain biological vectors that transmit pathogens and can serve as reservoirs for such infectious pathogens. Babesia bovis is a tick-borne pathogen, vectored by cattle fever ticks, Rhipicephalus spp., that can cause up to 90% mortality in naive adult cattle. While cattle are the primary host for cattle fever ticks, wild and exotic ungulates, including white-tailed deer (WTD), are known to be viable alternative hosts. The presence of cattle fever tick populations resistant to acaricides raises concerns regarding the possibility of these alternative hosts introducing tick-borne babesial parasites into areas free of infection. Understanding the B. bovis reservoir competence of these alternative hosts is critical to mitigating the risk of introduction. In this study, we tested the hypothesis that WTD are susceptible to infection with a B. bovis strain lethal to cattle. Two groups of deer were inoculated intravenously with either B. bovis blood stabilate or a larval extract supernatant containing sporozoites from infected R. microplus larvae. The collective data demonstrated that WTD are neither a transient host nor reservoir of B. bovis. This conclusion is supported by the failure of B. bovis to establish an infection in deer regardless of inoculum. Although specific antibody was detected for a short period in the WTD, the PCR results were consistently negative at multiple time points throughout the experiment and blood from WTD that had been exposed to parasite, transferred into naïve recipient susceptible calves, failed to establish infection. In contrast, naïve steers inoculated intravenously with either B. bovis blood stabilate or the larval extract supernatant containing sporozoites rapidly succumbed to disease. These findings provide evidence that WTD are not an epidemiological component in the maintenance of B. bovis infectivity to livestock.  相似文献   

5.
Vaccination with live attenuated parasites has been shown to induce high level of protection against Toxoplasma gondii. In this study we compared the Mic1-3KO tachyzoite (a live attenuated strain) with the parental wild type (WT) tachyzoite in terms of virulence in mice in vivo, dissemination in mouse tissues and persistence in mouse brain. Survival of mice infected with the Mic1-3KO parasites correlated with reduced parasite burden in mouse tissues compared to the parental strain. Like the WT parasite, Mic1-3KO is able to form tissue cysts in vivo which are not, in our experimental conditions, infectious when given by oral route. Infection with the attenuated tachyzoite induced lower levels of cytokine and chemokine than with the parental strain. These data demonstrate that the deleted strain derived from a type I strain behaves like type II strain in outbred mice in terms of virulence, dissemination in mouse tissue and persistence in brain.  相似文献   

6.
Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease.  相似文献   

7.

Background

During Trypanosoma cruzi infection, macrophages produce reactive oxygen species (ROS) in a process called respiratory burst. Several works have aimed to elucidate the role of ROS during T. cruzi infection and the results obtained are sometimes contradictory. T. cruzi has a highly efficiently regulated antioxidant machinery to deal with the oxidative burst, but the parasite macromolecules, particularly DNA, may still suffer oxidative damage. Guanine (G) is the most vulnerable base and its oxidation results in formation of 8-oxoG, a cellular marker of oxidative stress.

Methodology/Principal Findings

In order to investigate the contribution of ROS in T. cruzi survival and infection, we utilized mice deficient in the gp91phox (Phox KO) subunit of NADPH oxidase and parasites that overexpress the enzyme EcMutT (from Escherichia coli) or TcMTH (from T. cruzi), which is responsible for removing 8-oxo-dGTP from the nucleotide pool. The modified parasites presented enhanced replication inside murine inflammatory macrophages from C57BL/6 WT mice when compared with control parasites. Interestingly, when Phox KO macrophages were infected with these parasites, we observed a decreased number of all parasites when compared with macrophages from C57BL/6 WT. Scavengers for ROS also decreased parasite growth in WT macrophages. In addition, treatment of macrophages or parasites with hydrogen peroxide increased parasite replication in Phox KO mice and in vivo.

Conclusions

Our results indicate a paradoxical role for ROS since modified parasites multiply better inside macrophages, but proliferation is significantly reduced when ROS is removed from the host cell. Our findings suggest that ROS can work like a signaling molecule, contributing to T. cruzi growth inside the cells.  相似文献   

8.
Conventional reverse genetic approaches for study of Plasmodium malaria parasite gene function are limited, or not applicable. Hence, new inducible systems are needed. Here we describe a method to control P. falciparum gene expression in which target genes bearing a glmS ribozyme in the 3′ untranslated region are efficiently knocked down in transgenic P. falciparum parasites in response to glucosamine inducer. Using reporter genes, we show that the glmS ribozyme cleaves reporter mRNA in vivo leading to reduction in mRNA expression following glucosamine treatment. Glucosamine-induced ribozyme activation led to efficient reduction of reporter protein, which could be rapidly reversed by removing the inducer. The glmS ribozyme was validated as a reverse-genetic tool by integration into the essential gene and antifolate drug target dihydrofolate reductase-thymidylate synthase (PfDHFR-TS). Glucosamine treatment of transgenic parasites led to rapid and efficient knockdown of PfDHFR-TS mRNA and protein. PfDHFR-TS knockdown led to a growth/arrest mutant phenotype and hypersensitivity to pyrimethamine. The glmS ribozyme may thus be a tool for study of essential genes in P. falciparum and other parasite species amenable to transfection.  相似文献   

9.
BackgroundThe Zanzibar Archipelago (Pemba and Unguja islands) is targeted for the elimination of human urogenital schistosomiasis caused by infection with Schistosoma haematobium where the intermediate snail host is Bulinus globosus. Following multiple studies, it has remained unclear if B. nasutus (a snail species that occupies geographically distinct regions on the Archipelago) is involved in S. haematobium transmission on Zanzibar. Additionally, S. haematobium was thought to be the only Schistosoma species present on the Zanzibar Archipelago until the sympatric transmission of S. bovis, a parasite of ruminants, was recently identified. Here we re-assess the epidemiology of schistosomiasis on Pemba and Unguja together with the role and genetic diversity of the Bulinus spp. involved in transmission.Methodology/Principal findingsMalacological and parasitological surveys were conducted between 2016 and 2019. In total, 11,116 Bulinus spp. snails were collected from 65 of 112 freshwater bodies surveyed. Bulinus species identification were determined using mitochondrial cox1 sequences for a representative subset of collected Bulinus (n = 504) and together with archived museum specimens (n = 6), 433 B. globosus and 77 B. nasutus were identified. Phylogenetic analysis of cox1 haplotypes revealed three distinct populations of B. globosus, two with an overlapping distribution on Pemba and one on Unguja. For B. nasutus, only a single clade with matching haplotypes was observed across the islands and included reference sequences from Kenya. Schistosoma haematobium cercariae (n = 158) were identified from 12 infected B. globosus and one B. nasutus collected between 2016 and 2019 in Pemba, and cercariae originating from 69 Bulinus spp. archived in museum collections. Schistosoma bovis cercariae (n = 21) were identified from seven additional B. globosus collected between 2016 and 2019 in Pemba. By analysing a partial mitochondrial cox1 region and the nuclear ITS (1–5.8S-2) rDNA region of Schistosoma cercariae, we identified 18 S. haematobium and three S. bovis haplotypes representing populations associated with mainland Africa and the Indian Ocean Islands (Zanzibar, Madagascar, Mauritius and Mafia).Conclusions/SignificanceThe individual B. nasutus on Pemba infected with S. haematobium demonstrates that B. nasutus could also play a role in the local transmission of S. haematobium. We provide preliminary evidence that intraspecific variability of S. haematobium on Pemba may increase the transmission potential of S. haematobium locally due to the expanded intermediate host range, and that the presence of S. bovis complicates the environmental surveillance of schistosome infections.  相似文献   

10.
A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.berghei followed by in vivo selection with the prodrug 5-fluorocytosine (5-FC). The combination of yfcu and a positive selectable marker was used to first achieve positive selection of mutant parasites with a disrupted gene in a conventional manner. Thereafter through negative selection using 5-FC, mutants were selected where the disrupted gene had been restored to its original configuration as a result of the excision of the selectable markers from the genome through homologous recombination. This procedure was carried out for a Plasmodium gene (p48/45) encoding a protein involved in fertilization, the function of which had been previously implied through gene disruption alone. Such reversible recombination can therefore be employed for both the rapid analysis of the phenotype by targeted disruption of a gene and further associate phenotype and function by genotype restoration through the use of a single plasmid and a single positive selectable marker. Furthermore the negative selection system may also be adapted to facilitate other procedures such as 'Hit and Run' and 'vector recycling' which in principle will allow unlimited manipulation of a single parasite clone. This is the first demonstration of the general use of yFCU in combination with a positive selectable marker in reverse genetics approaches and it should be possible to adapt its use to many other biological systems.  相似文献   

11.
12.
Bovine babesiosis caused by Babesia species is an economically significant disease of cattle. Severe clinical babesiosis in cattle is caused by Babesia bovis, B. bigemina, and the recently discovered Babesia sp. Mymensingh. Mongolia is an agricultural country with a large cattle inventory. Although previous studies have detected active infections of B. bovis and B. bigemina in Mongolian cattle, only a few provinces were surveyed. Additionally, the endemicity of Babesia sp. Mymensingh in Mongolia remains unknown. We screened blood DNA samples from 725 cattle reared in 16 of the 21 Mongolian provinces using B. bovis-, B. bigemina-, and Babesia. sp. Mymensingh-specific PCR assays. The overall positive rates of B. bovis, B. bigemina, and Babesia sp. Mymensingh were 27.9% (n = 202), 23.6% (n = 171), and 5.4% (n = 39), respectively. B. bovis and B. bigemina were detected in cattle in all surveyed provinces; whereas Babesia sp. Mymensingh was detected in 11 of the 16 surveyed provinces. On a per province basis, the B. bovis- B. bigemina-, and Babesia sp. Mymensingh-positive rates were 5.9–52.0%, 9.1–76.3%, and 0–35.7%, respectively. In conclusion, this is the first report of Babesia sp. Mymensingh in Mongolia. In addition, we found that species of Babesia that are capable of causing bovine clinical babesiosis, including B. bovis, B. bigemina, and Babesia sp. Mymensingh, are widespread throughout the country.  相似文献   

13.
This protocol describes a methodology for the genetic transformation of the rodent malaria parasite Plasmodium berghei and the subsequent selection of transformed parasites expressing green fluorescent protein (GFP) by flow-sorting. It provides methods for: transfection of the schizont stage with DNA constructs that contain gfp as the selectable marker; selection of fluorescent mutants by flow-sorting; and injection of flow-sorted, GFP-expressing parasites into mice and the subsequent collection of transformed parasites. The use of two different promoters for the expression of GFP is described; these two promoters require slightly different procedures for the selection of mutants. The protocol enables the collection of transformed parasites within 10-12 days after transfection. The genetic modification of P. berghei is widely used to investigate gene function in Plasmodium sp. The application of flow-sorting to the selection of transformed parasites increases the possibilities of parasite mutagenesis, by effectively expanding the range of selectable markers.  相似文献   

14.
15.
Schistosomes cause schistosomiasis, the world’s second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.  相似文献   

16.
Aspergillus terreus produces a unique enzyme, blasticidin S deaminase, which catalyzes the deamination of blasticidin S (BS), and in consequence confers high resistance to the antibiotic. A cDNA clone derived from the structural gene for BS deaminase (BSD) was isolated by transforming Escherichia coli with an Aspergillus cDNA expression library and directly selecting for the ability to grow in the presence of the antibiotic. The complete nucleotide sequene of BSD was determined and proved to contain an open reading frame of 393 bp, encoding a polypeptide of 130 amino acids. Comparison of its nulceotide sequence with that of bsr, the BS deaminase gene isolated from Bacillus cereus, indicated no homology and a large difference in codon usage. The activity of BSD expressed in E. coli was easily quantified by an assay based on spectrophotometric recording. The BSD gene was placed in a shuttle vector for Schizosaccharomyces pombe, downstream of the SV40 early region promoter, and this allowed direct selection with BS at high frequency, following transformation into the yeast. The BSD gene was also employed as a selectable marker for Pyricularia oryzae, which could not be transformed to BS resistance by bsr. These results promise that the BSD gene will be useful as a new dominant selectable marker for eukaryotes.  相似文献   

17.
Integration of functionally active human dihydrofolate reductase (hDHFR) gene into the Bacillus subtilis chromosome was performed. The clones obtained contained 1 to 7 copies of hDHFR gene per chromosome equivalent and were resistant to trimethoprim. In cell lysates of such clones a protein with the molecular mass of hDHFR was detected. The hDHFR gene was stably maintained in all clones having this gene integrated into the bacterial chromosome, when grown under non-selective conditions.  相似文献   

18.
Genetically altered or tagged Vibrio fischeri strains can be observed in association with their mutualistic host Euprymna scolopes, providing powerful experimental approaches for studying this symbiosis. Two limitations to such in situ analyses are the lack of suitably stable plasmids and the need for a fluorescent tag that can be used in tandem with green fluorescent protein (GFP). Vectors previously used in V. fischeri contain the p15A replication origin; however, we found that this replicon is not stable during growth in the host and is retained by fewer than 20% of symbionts within a day after infection. In contrast, derivatives of V. fischeri plasmid pES213 were retained by ~99% of symbionts even 3 days after infection. We therefore constructed pES213-derived shuttle vectors with a variety of selectable and visual markers. To include a visual tag that can be used in conjunction with GFP, we compared seven variants of the DsRed2 red fluorescent protein (RFP): mRFP1, tdimer2(12), DsRed.T3, DsRed.T4, DsRed.M1, DsRed.T3_S4T, and DsRed.T3(DNT). The last variant was brightest, displaying >20-fold more fluorescence than DsRed2 in V. fischeri. RFP expression did not detectably affect the fitness of V. fischeri, and cells were readily visualized in combination with GFP-expressing cells in mixed infections. Interestingly, even when inocula were dense enough that most E. scolopes hatchlings were infected by two strains, there was little mixing of the strains in the light organ crypts. We also used constitutive RFP in combination with the luxICDABEG promoter driving expression of GFP to visualize the spatial and temporal induction of this bioluminescence operon during symbiotic infection. Our results demonstrate the utility of pES213-based vectors and RFP for in situ experimental approaches in studies of the V. fischeri-E. scolopes symbiosis.  相似文献   

19.
There is a need for recent information on intermediate snail hosts of schistosomes in The Gambia; the previous studies were conducted over three decades ago. This study assessed the incidence, species diversity, distribution and infection status of schistosome intermediate snail hosts in the country. Malacological surveys were conducted in all 5 regions of The Gambia: Central River Region (CRR), Upper River Region (URR), Western Region (WR), Lower River Region (LRR) and North Bank Region (NBR). Sampling of snails was undertaken at 114 sites that included permanent water bodies such as streams (bolongs), rice fields, irrigation canals and swamps; and temporal (seasonal) laterite pools. Ecological and physicochemical factors of sites were recorded. Snails were identified morphologically and screened for schistosome infections using molecular techniques. Freshwater snails were found at more than 50% (60/114) of sites sampled. While three species of Bulinus were collected, no Biomphalaria snails were found in any of the sites sampled. Of the total 2877 Bulinus snails collected, 75.9% were identified as Bulinus senegalensis, 20.9% as Bulinus forskalii and 3.2% as Bulinus truncatus. Seasonal pools produced the largest number of snails, and CRR was the region with the largest number of snails. Bulinus senegalensis was found more in seasonal pools as opposed to permanent sites, where B. forskalii and B. truncatus were observed to thrive. Bulinus snails were more common in seasonal sites where aquatic vegetation was present. In permanent sites, the abundance of snails increased with increase in water temperature and decrease in water pH. Bulinus senegalensis was found infected with both S. haematobium and S. bovis, while B. forskalii and B. truncatus had only S. bovis infection. While the human parasite S. haematobium was restricted to just four sites, the livestock parasite S. bovis had a much more widespread geographical distribution across both CRR and URR. This new information on the distribution of intermediate snail hosts of schistosomes in The Gambia will be vital for the national schistosomiasis control initiative.  相似文献   

20.
Plasmid-free Chlamydia trachomatis serovar L2 organisms have been transformed with chlamydial plasmid-based shuttle vectors pGFP::SW2 and pBRCT using β-lactamase as a selectable marker. However, the recommendation of amoxicillin, a β-lactam antibiotics, as one of the choices for treating pregnant women with cervicitis due to C. trachomatis infection has made the existing shuttle vectors unsuitable for transforming sexually transmitted infection (STI)-causing serovars of C. trachomatis. Thus, in the current study, we modified the pGFP::SW2 plasmid by fusing a blasticidin S deaminase gene to the GFP gene to establish blasticidin resistance as a selectable marker and replacing the β-lactamase gene with the Sh ble gene to eliminate the penicillin resistance. The new vector termed pGFPBSD/Z::SW2 was used for transforming plasmid-free C. trachomatis serovar D organisms. Using blasticidin for selection, stable transformants were obtained. The GFP-BSD fusion protein was detected in cultures infected with the pGFPBSD/Z::SW2-trasnformed serovar D organisms. The transformation restored the plasmid property to the plasmid-free serovar D organisms. Thus, we have successfully modified the pGFP::SW2 transformation system for studying the biology and pathogenesis of other STI-causing serovars of C. trachomatis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号