首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study describes several features of the aquatic environment with the emphasis on the total vs. filter-passing fraction (FP) of heavy metals in microhabitats of two typical deep-sea vent organisms: the filter-feeder, symbiont-bearing Bathymodiolus and the grazer shrimps Rimicaris/Mirocaris from the Mid-Atlantic Ridge (MAR). The concentration of 10 trace elements: Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb and Hg was explored highlighting common and distinctive features among the five hydrothermal vent sites of the MAR: Menez Gwen, Lucky Strike, Rainbow, Saldanha, and Menez Hom that are all geo-chemically different when looking at the undiluted hydrothermal fluid composition. The drop off in the percentage of FP from total metal concentration in mussel and/or shrimp inhabited water samples (in mussel beds at Rainbow, for instance, FP fraction of Fe was below 23%, Zn 24 %, Al 65%, Cu 70%, and Mn 89%) as compared to non-inhabited areas (where 94% of the Fe, 90% of the Zn, 100% of the other metals was in the FP fraction) may indicate an influence of vent organisms on their habitat’s chemistry, which in turn may determine adaptational strategies to elevated levels of toxic heavy metals. Predominance of particulate fraction over the soluble metals, jointly with the morphological structure and elemental composition of typical particles in these vent habitats suggest a more limited metal bioavailability to vent organisms as previously thought. In addition, it is evoked that vent invertebrates may have developed highly efficient metal-handling strategies targeting particulate phase of various metals present in the mixing zones that enables their survival under these extreme conditions.  相似文献   

2.
The concentrations of toxic trace metals in the soil samples collected from Tirupati, India, have been determined using differential pulse anodic stripping voltammetry (DPASV). The total metal concentrations of the soils in the study area were in the following ranges: 19.5 to 23.6 mg of Zn, 0.032 to 0.036 mg of Cd, 15.8 to 18.9 mg of Pb, and 19.0 to 23.4 mg of Cu per kg soil. Analysis of standard reference material IAEA-SOIL-5 indicates good accuracy. Recoveries were nearly quantitative for all elements studied. Comparison of the average metal concentration levels with world averages indicates an elevated value for Pb. The applicability of this method was crosschecked with AAS and the results were in good agreement.  相似文献   

3.
We determined the concentrations of Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn in dietary supplements of marine origin. Four supplement categories were studied; algae, coral, krill, and shark cartilage. A direct mercury analyzer was used for Hg determinations while acid digestions and ICP-AES were used for Cr analysis and ICP-MS for the other trace metals. Algae are the supplements showing the highest concentrations of Pb, Cr, and Ni with respective means of 1.6 mg Pb/kg dry weight (d.w.), 3.2 Cr mg/kg d.w., and 8.0 mg Ni/kg d.w. Krill supplements have the highest levels of Cd, Cu, and Zn with 0.65 mg Cd/kg d.w., 63 mg Cu/kg d.w., and 50 mg Zn/kg d.w., respectively. Shark cartilage supplements show the highest levels of Hg and Co with mean concentrations of 160 μg Hg/kg d.w. and 73 ± 51 μg Co/kg d.w., respectively. No samples in our study exceeded the provisional tolerable daily intakes set by Health Canada, the joint committee of the World Health Organization/Food and Agricultural Organization, or the U.S. Environmental Protection Agency. Nevertheless, Ni and Pb in algae and Hg in shark cartilage may end up contributing to a very significant portion of the allowable daily intake—leaving little room for normal intake through food consumption and other exposure pathways.  相似文献   

4.
Concentrations of four metals (Cu, Zn, Pb, and Cd) in the sediments of the Anzali Lagoon in the northern part of Iran were determined to evaluate the level of contamination and spatial distribution. The sediments were collected from 21 locations in the lagoon. At each lagoon site a core, 60 cm long, was taken. The ranges of the measured concentrations in the sediments are as follows: 17–140 mg kg?1 for Cu, 20–113 mg kg?1 for Zn, 1–37 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in surficial (0-20 cm) and 16–87 mg kg?1 for Cu, 28.5–118 mg kg?1 for Zn, 3–20 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in deep (40–60 cm) sediments. The results of the geoaccumulation index (Igeo) show that Cd causes moderate to heavy pollution in most of the study area. Environmental risk evaluation showed that the pollution in the Anzali Lagoon is moderate to considerable and the ranking of the contaminants followed the order: Cd > Cu > Pb > Zn. Some locations present severe pollution by metals depending on the sources, of which sewage outlets and phosphate fertilizers are the main sources of contaminants to the area.  相似文献   

5.
Five heavy metals (Cd, Cu, Ni, Pb, and Zn) in river sediments from Abshineh River, Hamedan, western Iran, were fractionated by a sequential extraction procedure. Cu, Ni, Pb, and Zn existed in sediments mainly in residual fraction (mean 92%, 86%, 77%, and 65%, respectively), whereas Cd occurred mostly as organic matter (mean 41%) and exchangeable (mean 25%) fractions. The mean percent of mobile fraction of Cd, Cu, Ni, Pb, and Zn in contaminated sediments was 25, 13, 4, 24, and 10, respectively, which suggests that the mobility and bioavailability of the five metals in sediments probably decline in the following order: Cd = Pb > Cu > Zn > Ni. The metal levels were also evaluated according to the contamination factor, which revealed significant anthropogenic pollution of Cd and Pb.  相似文献   

6.
7.
Since the toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic or essential metals, studies addressing the chemical interactions between trace elements are increasingly important. In this study correlations between the main toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements were evaluated in the tissues (liver, kidney and muscle) of 120 cattle from NW Spain, using Spearman rank correlation analysis based on analytical data obtained by ICP-AES. Although accumulation of toxic elements in cattle in this study is very low and trace essential metals are generally within the adequate ranges, there were significant associations between toxic and essential metals. Cd was positively correlated with most of the essential metals in the kidney, and with Ca, Co and Zn in the liver. Pb was significantly correlated with Co and Cu in the liver. A large number of significant associations between essential metals were found in the different tissues, these correlations being very strong between Ca, Cu, Fe, Mn, Mo and Zn in the kidney. Co was moderately correlated with most of the essential metals in the liver. In general, interactions between trace elements in this study were similar to those found in polluted areas or in experimental studies in animals receiving diets containing high levels of toxic metals or inadequate levels of nutritional essential elements. These interactions probably indicate that mineral balance in the body is regulated by important homeostatic mechanisms in which toxic elements compete with the essential metals, even at low levels of metal exposure. The knowledge of these correlations may be essential to understand the kinetic interactions of metals and their implications in the trace metal metabolism.  相似文献   

8.
9.
Abstract

Wood fuels being a renewable source of primary energy have been considered environmentally friendly. However, wood combustion in domestic boilers is a source of air pollution. The lack of a dust collection device is the reason why flue gases emit a significant load of particulate pollutants into the air, including heavy metals. The aim of this research was to assess the environmental hazard caused by both emissions of heavy metals during wood combustion in domestic boilers and their chemical forms present in fly ash.

From the various wood fuels burnt in domestic boilers, the fly ash selected for this study came from the combustion of briquettes of softwood from non-polluted areas, and from burning hardwood fuel from trees exposed to pollutants from heavy traffic. The wood fuels satisfy the quality demands determined in the EN 14961 Solid Biofuels - Fuel quality assurances. However, the concentrations of Cd, Cu, Pb and Zn in the fly ash are considerably higher than the appropriate limit values determined for soil improvers. Sequential extraction shows that Cd and Zn are associated mainly with the water leaching and carbonate fractions, regarded as mobile and bioavailable, and pose the potentially greatest hazard to the environment and human health. Cu, Mn and Pb associated with less mobile fractions may not pose a direct air quality hazard but, due to their high concentrations, medium-term and long-term effects on soils and surface and subsurface waters should be considered.  相似文献   

10.
Effects of various concentrations of two heavy metals, namely Cd and Cu, on gametophytes of Laminariajaponica Aresch were determined by recording morphological changes of gametophytes, determining pH values and the heavy metal content of the culture solution, calculating the germination rate of sporophytes, and observing heavy metal (Cd) distribution using a fluorescence microscope. The results showed that heavy metals damaged the gametophytes, and were even lethal, and that the higher the concentration of heavy metal ions, the greater the injury to gametophytes. Gametophytes could not survive in culture solutions containing more than 100 mg/L Cd and 50 mg/L Cu and were only able to survive in culture solution containing a mixture of Cd and Cu up to a concentration of 10 mg/L, which indicates that gametophytes have a higher tolerance to Cd than Cu and that multiple heavy metal ions in solution markedly aggravate the damage to gametophytes compared with individual heavy metal ions. With increases in the concentration of the heavy metal, the burgeoning rate of sporophytes decreased acutely, and solutions containing multiple heavy metal ions caused even more marked harm to sporophytes than solutions containing a single heavy metal ion, because most sporophytes died in mixed solutions. The pH value of the culture medium dropped immediately at the beginning (the first day) of treatment, increased over the following days, and then decreased again. The pH of culture media containing multiple heavy metal ions showed greater variation than media containing a single heavy metal ion, with the extent of the decrease in pH of culture media containing multiple ions being greatest during the last period of the experiment. With increases in the concentration of heavy metals, the capacity of gametophytes to accumulate these ions increased. The blue fluorescent light emitted by the Cd- and Cd-binding protein complex existing in gametophytes in media containing different concentrations of Cd showed clearly the distribution of the ion in gametophytes and the results obtained were consistent with distribution determined using other methods.All results of the present study showed that gametophytes of L. japonica play a remarkable role as heavy metal decontaminators, especially with regard to Cd.  相似文献   

11.
Effects of various concentrations of two heavy metals, namely Cd and Cu, on gametophytes of Laminariajaponica Aresch were determined by recording morphological changes of gametophytes, determining pH values and the heavy metal content of the culture solution, calculating the germination rate of sporophytes, and observing heavy metal (Cd) distribution using a fluorescence microscope. The results showed that heavy metals damaged the gametophytes, and were even lethal, and that the higher the concentration of heavy metal ions, the greater the injury to gametophytes. Gametophytes could not survive in culture solutions containing more than 100 mg/L Cd and 50 mg/L Cu and were only able to survive in culture solution containing a mixture of Cd and Cu up to a concentration of 10 mg/L, which indicates that gametophytes have a higher tolerance to Cd than Cu and that multiple heavy metal ions in solution markedly aggravate the damage to gametophytes compared with individual heavy metal ions. With increases in the concentration of the heavy metal, the burgeoning rate of sporophytes decreased acutely, and solutions containing multiple heavy metal ions caused even more marked harm to sporophytes than solutions containing a single heavy metal ion, because most sporophytes died in mixed solutions. The pH value of the culture medium dropped immediately at the beginning (the first day) of treatment, increased over the following days, and then decreased again. The pH of culture media containing multiple heavy metal ions showed greater variation than media containing a single heavy metal ion, with the extent of the decrease in pH of culture media containing multiple ions being greatest during the last period of the experiment. With increases in the concentration of heavy metals, the capacity of gametophytes to accumulate these ions increased. The blue fluorescent light emitted by the Cd-and Cd-binding protein complex existing in gametophytes in media containing different concentrations of Cd showed clearly the distribution of the ion in gametophytes and the results obtained were consistent with distribution determined using other methods. All results of the present study showed that gametophytes of L. japonica play a remarkable role as heavy metal decontaminators, especially with regard to Cd.  相似文献   

12.
In previous studies based on indirect procedures, we reported that Mg deficit increased the bioavailability of a number of elements such as calcium, zinc, iron, copper, manganese and decreased selenium absorption. The present study was designed to verify these findings by direct methods. We investigated the effect of dietary magnesium deficiency on enterocyte Ca, Fe, Zn, Cu, Mn and Se concentrations. Male Wistar rats were fed a Mg-deficient diet (129 mg Mg/kg food) for 70 days. Whole enterocytes from the upper jejunum were isolated and Ca, Fe, Zn, Cu, Mn and Se were determined. The results were compared with findings in a control group that was pair-fed with an identical diet except that it covered this species's nutritional requirements for Mg (480 mg Mg/kg food). The Mg-deficient diet significantly increased enterocyte content of Ca, Fe, Zn, Cu and Mn; however, we found no significant changes in the Se content of these cells. These data support the results obtained by indirect methods.  相似文献   

13.
In order to show the accumulation of Cd, Pb, Cu and Zn in smokers, levels of these metals in serum were determined in 108 subjects: 32 non-smokers, 37 average cigarette smokers and 39 heavy cigarette smokers. The analysis was carried out by potentiometric stripping analysis (PSA) with the Tecator "Striptec System". Backward oxidation time of the amalgamated metals, by means of electrolysis, in a thin "film" of mercury in an electrode, gives their concentration measure. Our data showed an increase in average values of Cd and Pb in the serum of heavy smokers compared with average and non-smokers. Instead, as regards Cu and Zn, no differences were found in the two groups of smokers compared with the non-smokers used as controls. Results obtained of the Cd and Pb levels in serum are compatible with the presence of these metals in cigarette tobacco and inhaling them could contribute to disease connected with their accumulation in the human organism. For these subjects the increase in Cd values is of particular importance as it could predispose pulmonary emphysema.  相似文献   

14.
A new method CEHIXM for extracting hea vy metals from high permeable soils under coupled electric-hydraulic gradient was investigated. Spent foundry sand, containing high levels of Pb, Cd, Zn, and Mn, was used as the contaminated source. A suitable ion-exchange resin was used for trapping and recovering the metals from the aqueous medium. Control experiments were conducted using hydraulic gradient alone to assess the leachability of the contaminants. The experiments were repeated with 50?V across the soil sample and without hydraulic gradient to evaluate ion migration under electric gradient. A number of CEHIXM experiments involving both hydraulic and electric gradients were conducted at a constant DC voltage of 50?V and a constant flow velocity of 0.0178?cm/ sec. With hydraulic gradient only, 3 to 8% metals were extracted, whereas with electric gradient only the metal removal rate was 0 to 0.7%. When the electric and hydraulic gradients were coupled, as much as 93% of Pb, 97% of Cd, 98% of Zn, and 94% of Mn were extracted, after 100?h of the processing.  相似文献   

15.
To improve the luminescence properties of ZnS : Cu, a multi‐doped method was used to prepare Zn(Cu0.01Cd0.02Mg0.02)S in this paper. As a new designed semiconductor compound, particular properties of Zn(Cu0.01Cd0.02Mg0.02)S were investigated, especially luminescence intensity and lifetime. Structure and compositions of Zn(Cu0.01Cd0.02Mg0.02)S phosphor were analyzed by XRD and TEM respectively. Luminescence intensity and luminescence lifetime of the prepared Zn(Cu0.01Cd0.02Mg0.02)S phosphor were investigated by luminescence spectrometry. As a result, compared with pure ZnS or doped ZnS phosphors, Zn(Cu0.01Cd0.02Mg0.02)S showed remarkably improved luminescence properties. The optimum ratio of three dopants was obtained for solving luminescence problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.

Background and aims

The ionome (elemental composition) of grassland species has rarely been studied at the level of individual organs and little is known about effects of soil chemical properties on the ionome. Using the model oxalate plant Rumex obtusifolius, we asked how its biomass production and the distribution of elements between its organs is affected by soil chemical properties.

Methods

We established a pot experiment with R. obtusifolius planted in acidic non-contaminated control and in slightly acidic and alkaline soils anthropogenically contaminated by the risk elements As, Cd, Pb, and Zn. Both contaminated soils were untreated and treated by lime and superphosphate. We determined biomass production and the concentrations of elements in its organs.

Results

Biomass production was negatively related to the mobility of micro- and risk elements. Restricted transport of micro- and risk elements from belowground organs into leaves was recorded in untreated contaminated soils. In both lime-treated soils and in superphosphate-treated alkaline soil, elevated transport of micro- and risk elements from belowground organs into leaves was recorded in comparison to untreated contaminated soils. The lowest concentrations of micro- and risk elements were recorded in stems and seeds, followed by belowground organs and leaves.

Conclusions

R. obtusifolius is an As-, Cd-, Pb-, and Zn-excluder and is sensitive to high availability of micro- and risk elements in the soil. Soil chemical properties affect the distribution of essential elements within the plant greatly.  相似文献   

17.
The effects of the total soft tissue dry weight and shell thickness and on the accumulation of Cd, Cu, Pb, and Zn were determined in the green-lipped mussel Perna viridis. In agreement with Boyden's formula (1977), our results showed that the plotting of metal concentrations against the total soft tissue dry weight and shell thickness of the mussel on a double logarithmic basis gave negative coefficients especially for Cd, Pb, and Zn. Therefore, the smaller mussels (lower total soft tissue dry weight) had higher concentrations of Cd, Pb, and Zn than the larger ones. Since shell thickness could be considered to estimate of the age of the mussel, it was also found that the younger mussels accumulated more Cd, Pb, and Zn than the older ones. This indicated that P. viridis has a different metabolic strategy for each of the metals studied which may be related to age. However, the accumulation of Cu was hardly affected by the sizes and ages of the mussel. This indicated that the accumulation pathways of Cu and the processes affecting the bioavailability of Cu to the mussel are different from those for Cd, Pb, and Zn.  相似文献   

18.
19.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:56,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

20.
Summary Concentration of N, P, K, Ca, Mg and S in summer groundnut crop was higher than in kharif while Zn, Fe, Mn and Cu contents were higher in summer crop. Kernel's N, P and Zn; Leaflet's Ca and Mn; Stem's K and Fe; Root's S and Cu and Petiole's Mg contents were highest. Shell's N, P, K, Mg, S, Zn and Cu; Kernel's Ca, Fe and Mn contents were the least. N, P, K, S, Zn and Cu concentrations decreased linearly as the crop grew. Ca, Mg, Fe and Mn concentrations did not display any distinct pattern. Ca concentration was positively correlated with pod yield in both the seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号