首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin promotes hepatic apolipoprotein B100 (apoB100) degradation, whereas insulin resistance is a major cause of hepatic apoB100/triglyceride overproduction in type 2 diabetes. The cellular trafficking receptor sortilin 1 (Sort1) was recently identified to transport apoB100 to the lysosome for degradation in the liver and thus regulate plasma cholesterol and triglyceride levels. Genetic variation of SORT1 was strongly associated with cardiovascular disease risk in humans. The major goal of this study is to investigate the effect and molecular mechanism of insulin regulation of Sort1. Results showed that insulin induced Sort1 protein, but not mRNA, in AML12 cells. Treatment of PI3K or AKT inhibitors decreased Sort1 protein, whereas expression of constitutively active AKT induced Sort1 protein in AML12 cells. Consistently, hepatic Sort1 was down-regulated in diabetic mice, which was partially restored after the administration of the insulin sensitizer metformin. LC-MS/MS analysis further revealed that serine phosphorylation of Sort1 protein was required for insulin induction of Sort1 in a casein kinase 2-dependent manner and that inhibition of PI3K signaling or prevention of Sort1 phosphorylation accelerated proteasome-dependent Sort1 degradation. Administration of a PI3K inhibitor to mice decreased hepatic Sort1 protein and increased plasma cholesterol and triglyceride levels. Adenovirus-mediated overexpression of Sort1 in the liver prevented PI3K inhibitor-induced Sort1 down-regulation and decreased plasma triglyceride but had no effect on plasma cholesterol in mice. This study identified Sort1 as a novel target of insulin signaling and suggests that Sort1 may play a role in altered hepatic apoB100 metabolism in insulin-resistant conditions.  相似文献   

2.
Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) have been found to be associated with postprandial hypertriglyceridemia (PPHTg). However, whether PPHTg can cause IR and diabetes is not clear. We therefore investigated the role of PPHTg in development of T2DM in rat model of T2DM. 96 male Wistar rats were randomized into four groups (24 rats each). Control Group A, high sucrose diet (HSD) Group B, HSD+Pioglitazone (10mg/kg/day) Group C and HSD+Atorvastatin (20mg/kg/day) Group D. Fat and glucose tolerance tests were done at regular intervals in all groups besides insulin and body weight measurement. At 26 weeks, low dose streptozotocin (15mg/kg,i.p.) was given to half of the rats. All rats were followed up till 48 weeks. PPHTg developed as early as week 2 in Group B and stabilized by week 14. Group B displayed highest PPHTg compared to other groups. Atorvastatin treatment (Group D) abolished PPHTg which became comparable to controls, pioglitazone treatment partially blunted PPHTg resulting in intermediate PPHTg. Group B with highest PPHTg showed highest subsequent IR, glucose intolerance (GI) and highest incidence of prediabetes at week 26 and diabetes at week 34 and 46 compared to other groups. Group D rats displayed lower IR, GI, low incidence of prediabetes and diabetes at these time points compared to Groups B and C. ROC analysis showed that triglyceride area under the curve of each time point significantly predicts the risk of diabetes. Present study provides the evidence that PPHTg predicts the development of IR, GI and T2DM in rat model of diet induced T2DM.  相似文献   

3.
High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts profoundly on brain activity, i.e., synaptic plasticity.  相似文献   

4.
The incidence of obesity, insulin resistance, and type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Emerging experimental evidence suggests that the hormone melatonin plays an important role in the regulation of glucose metabolisms. In this study, we report that removal of melatonin receptor type 1 (MT1) significantly impairs the ability of mice to metabolize glucose and such inability is probably due to an increased insulin resistance in these mice. Our data suggest that MT1 receptors are implicated in the pathogenesis of T2D and open the door for a detailed exploration on the mechanisms by which MT1 receptors signaling may affect glucose metabolism.  相似文献   

5.
Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA) affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS) production. Western blot analysis was used to examine the levels of insulin receptor (IR), phosphorylated insulin receptor substrate 1 (IRS1, Ser307) and phospho-Akt (Ser473). We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307) and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307) response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307) and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.  相似文献   

6.
《Cell metabolism》2014,19(4):667-681
  1. Download : Download high-res image (126KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
9.
10.
11.

Background and aims

Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown.

Methods

Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection.

Results

Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake.

Conclusions

Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.  相似文献   

12.
NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. Aim: we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. Methods: mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. Results: CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1–3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. Conclusions: the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD.  相似文献   

13.
5-羟色胺(5-HT)作为一种神经递质在中枢神经系统中具有重要的作用,同时在外周组织系统中5-HT也发挥多种重要的生物功能, 如广泛参与机体的糖脂代谢、肝再生、胃肠运动等。综述外周5-HT诱导胰岛素抵抗的作用机制研究新进展,重点介绍5-HT对胰岛素信 号转导、糖脂代谢等方面的影响。  相似文献   

14.
《Endocrine practice》2014,20(11):1187-1197
ObjectiveTo analyze changes in plasma glucose, insulin, and glucagon in relation to glycemic response during treatment with dual add-on of saxagliptin (SAXA) plus dapagliflozin (DAPA) to metformin XR (MET) compared with SAXA add-on or DAPA add-on alone to MET in patients with type 2 diabetes mellitus (T2DM) poorly controlled with MET.MethodsDouble-blind trial in adults with glycated hemoglobin (HbAlc) ≥ 8.0 to ≤ 12.0% randomized to SAXA 5 mg/day plus DAPA 10 mg/day (n = 179), or SAXA 5 mg/day and placebo (n = 176), or DAPA 10 mg/day and placebo (n = 179) added to background MET ≥ 1,500 mg/ day. The mean change from baseline in the area under the curve from 0 to 180 minutes (AUC0-180 min) was calculated for glucose, insulin, and glucagon obtained during a liquid meal tolerance test (MTT).ResultsGlucose AUC0-180 min an was reduced more from baseline with SAXA + DAPA + MET (-12,940 mg/dL) compared with SAXA + MET (-6,309 mg/dL) and DAPA + MET (-11,247 mg/dL). Insulin AUC0-180 min significantly decreased with SAXA + DAPA + MET (-1,120 μU/mL) and DAPA + MET (-1,019 μU/mL) and increased with SAXA + MET (661 μU/mL). Glucagon AUC0-180 min only increased with DAPA + MET (2,346 pg/mL). The changes in glucose (P < .0001) and insulin (P = .0003) AUC0-180 min correlated with change in HbA1c, whereas the change in glucagon AUC0-180 min min did not (P = .27).ConclusionsWhen added to background MET, the combination of SAXA + DAPA provided additional reductions in glucose AUC0-180 min and HbA1c without the increase in insulin seen with SAXA and without the increase in glucagon seen with DAPA. Changes in insulin and glucose but not glucagon AUC0-180 min correlated with change in HbA1c. (Endocr Pract. 2014;20:1187-1197)  相似文献   

15.
16.
Although hyperglycemia is common in patients with acute myocardial infarction (MI), the underlying mechanisms are largely unknown. Insulin signaling plays a key role in the regulation of glucose homeostasis. In this study, we test the hypothesis that rapid alteration of insulin signaling pathways could be a potential contributor to acute hyperglycemia after MI. Male rats were used to produce MI by ligation of the left anterior descending coronary artery. Plasma glucose and insulin levels were significantly higher in MI rats than those in controls. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) was reduced significantly in the liver tissue of MI rats compared with controls, followed by decreased attachment of phosphatidylinositol 3-kinase (PI3K) p85 subunit with IRS1 and Akt phosphorylation. However, insulin-stimulated signaling was not altered significantly in skeletal muscle after MI. The relative mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase were slightly higher in the liver tissue of MI rats than those in controls. Rosiglitazone (ROSI) markedly restored hepatic insulin signaling, inhibited gluconeogenesis and reduced plasma glucose levels in MI rats. Insulin resistance develops rapidly in liver but not skeletal muscle after MI, which contributes to acute hyperglycemia. Therapy aimed at potentiating hepatic insulin signaling may be beneficial for MI-induced hyperglycemia.  相似文献   

17.
Chronic oxidative stress results in decreased responsiveness to insulin, eventually leading to diabetes and cardiovascular disease. Activation of the JNK signaling pathway can mediate many of the effects of stress on insulin resistance through inhibitory phosphorylation of insulin receptor substrate 1. By contrast, exercise, which acutely increases oxidative stress in the muscle, improves insulin sensitivity and glucose tolerance in patients with Type 2 diabetes. To elucidate the mechanism underlying the contrasting effects of acute versus chronic oxidative stress on insulin sensitivity, we used a cellular model of insulin-resistant muscle to induce either chronic or acute oxidative stress and investigate their effects on insulin and JNK signaling. Chronic oxidative stress resulted in increased levels of phosphorylated (activated) JNK in the cytoplasm, whereas acute oxidative stress led to redistribution of JNK-specific phosphatase MKP7 from the nucleus into the cytoplasm, reduction in cytoplasmic phospho-JNK, and a concurrent accumulation of phospho-JNK in the nucleus. Acute oxidative stress restored normal insulin sensitivity and glucose uptake in insulin-resistant muscle cells, and this effect was dependent on MKP7. We propose that the contrasting effects of acute and chronic stress on insulin sensitivity are driven by changes in subcellular distribution of MKP7 and activated JNK.  相似文献   

18.
19.
20.
脂联素与胰岛素抵抗   总被引:2,自引:0,他引:2  
胰岛素抵抗即胰岛素敏感性降低,是多种疾病,特别是糖尿病及心血管疾病共同的危险因素,是滋生多种代谢相关疾病的共同土壤。脂联素(adiponectin)是一种脂肪细胞特异性分泌的激素。近年来研究表明:脂联素具有促进血浆游离脂肪酸氧化、增加外周组织对胰岛素的敏感性、抑制肝糖输出和葡萄糖再生、抗动脉粥样硬化等功能。该介绍脂联素和胰岛素抵抗之间的关系,讨论其在治疗胰岛素抵抗和Ⅱ型糖尿病中的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号