首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor γ coactivator (PGC)-1α has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not known. The aim of the present study was therefore to investigate the role of muscle PGC-1α in acute inflammation. Quadriceps muscles were removed from 10-week old whole body PGC-1α knockout (KO), muscle specific PGC-1α KO (MKO) and muscle-specific PGC-1α overexpression mice (TG), 2 hours after an intraperitoneal injection of either 0.8 μg LPS/g body weight or saline. Basal TNFα mRNA content was lower in skeletal muscle of whole body PGC-1α KO mice and in accordance TG mice showed increased TNFα mRNA and protein level relative to WT, indicating a possible PGC-1α mediated regulation of TNFα. Basal p65 phosphorylation was increased in TG mice possibly explaining the elevated TNFα expression in these mice. Systemically, TG mice had reduced basal plasma TNFα levels compared with WT suggesting a protective effect against systemic low-grade inflammation in these animals. While TG mice reached similar TNFα levels as WT and showed more marked induction in plasma TNFα than WT after LPS injection, MKO PGC-1α mice had a reduced plasma TNFα and skeletal muscle TNFα mRNA response to LPS. In conclusion, the present findings suggest that PGC-1α enhances basal TNFα expression in skeletal muscle and indicate that PGC-1α does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1α seems however to impair the acute TNFα response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients.  相似文献   

5.
This study aimed to investigate the mechanisms that coordinate lymphangiogenesis. Using mouse models of lymphatic regeneration and inflammatory lymphangiogenesis, we explored the hypothesis that hypoxia inducible factor-α (HIF-1α) is a central regulator of lymphangiogenesis. We show that HIF-1α inhibition by small molecule inhibitors (YC-1 and 2-methyoxyestradiol) results in delayed lymphatic repair, decreased local vascular endothelial growth factor-C (VEGF-C) expression, reduced numbers of VEGF-C(+) cells, and reductions in inflammatory lymphangiogenesis. Using transgenic HIF-1α/luciferase mice to image HIF-1α expression in real time in addition to Western blot analysis and pimonidazole staining for cellular hypoxia, we demonstrate that hypoxia stabilizes HIF-1α during initial stages of wound repair (1-2 wk); whereas inflammation secondary to gradients of lymphatic fluid stasis stabilizes HIF-1α thereafter (3-6 wk). In addition, we show that CD4(+) cell-mediated inflammation is necessary for this response and regulates HIF-1α expression by macrophages, as CD4-deficient or CD4-depleted mice demonstrate 2-fold reductions in HIF-1α expression as compared to wild-types. In summary, we show that HIF-1α is a critical coordinator of lymphangiogenesis by regulating the expression of lymphangiogenic cytokines as part of an early response mechanism to hypoxia, inflammation, and lymphatic fluid stasis.  相似文献   

6.
Mechanical stimuli play important roles in proliferation and differentiation of connective tissue cells, and development and homeostatic maintenance of tissues. However, excessive mechanical loading to a tissue can injure cells and disrupt the matrix, as occurs in tendinopathy. Tendinopathy is a common clinical problem in athletes and in many occupational settings due to overuse of the tendon. Moreover, interleukin (IL)-1β is generally considered to be a "bad" cytokine, activating NF-κb and cell death and inducing matrix metalloproteinase (MMPs 1, 2, 3) expression and matrix destruction. However, activated NF-κB can also drive a cell survival pathway. We have reported that cyclic strain induced tenocyte death in three-dimensional (3D) cultures, and IL-1β could promote cell survival under strain. Therefore, it was hypothesized that 1) cyclic strain could induce cell death in tenocytes as observed in pathologic tendons in vivo; 2) a gene expression profile indicative of tendinopathy could be identified; and 3) low-dose IL-1β could protect cells from strain-induced, tendinopathy-like changes. Human tenocytes were cultured in 3D type I collagen hydrogels and subjected to 3.5% elongation at 1 Hz for 1 h/day for up to 5 days with or without IL-1β. Real-time RT-PCR data showed that cyclic strain regulated the expression of tendinopathy marker genes in a manner similar to that found in pathological tendons from patients and that addition of IL-1β reversed the gene expression changes to control levels. Results of further studies showed that IL-1β may modulate cell survival through upregulating the expression of connexin 43, which is involved in the modulation of cell death/survival in a variety of cells and tissues. The elucidation of the mechanisms underlying strain-induced cell death and recovery from strain injury will facilitate our understanding of the pathogenesis of tendinopathy and may lead to the discovery of new molecular targets for early diagnosis and treatment of tendinopathy.  相似文献   

7.
Necrotizing enterocolitis (NEC) is a potentially fatal illness in premature neonates. Tumor necrosis factor-α (TNF-α) and autophagy are associated with the pathogenesis of NEC. This study aimed to explore whether TNF-α might regulate apoptosis in neonatal NEC model cells IEC-6 via regulation of autophagy. NEC rat model was induced by hand feeding and exposure to asphyxia/cold-stress for histologic examination. The NEC in vitro model (IEC-6/NEC cells) was established by stimulating the intestinal epithelial cell line IEC-6 with lipopolysaccharide (LPS, 100 μg/mL) for 3 h to investigate the effects of TNF-α on IEC-6 proliferation and apoptosis. In this study, NEC rats showed decreased proliferating cell nuclear antigen (PCNA) expression, increased TUNEL-positive cells, higher expression of TNF-α, p-ERK1/2, and autophagy-related proteins in rat small intestine compared with their controls. Additionally, the LPS-stimulated IEC-6/NEC cells showed a significantly decreased proliferation and increased apoptosis compared with the control cells. Furthermore, the LPS-stimulated IEC-6/NEC cells exhibited enhanced autophagy level, as evidenced by a dose-dependent increase in Beclin-1 protein expression, LC3II/LC3I ratio and accumulation of MDC-positive autophagic vacuoles. Moreover, inhibition of autophagy by wortmannin or LY294002 significantly abolished the LPS-mediated decreased proliferation and increased apoptosis of IEC-6/NEC cells. Results also showed that inhibition of ERK1/2 pathway using U0126 significantly inhibited TNF-α-induced autophagy. Furthermore, the TNF-α-mediated inhibition of IEC-6 proliferation and promotion of IEC-6 apoptosis was abolished by U0126. Our findings demonstrated that TNF-α might induce autophagy through ERK1/2 pathway to regulate apoptosis in neonatal NEC cells IEC-6. Our study enhances our understanding of neonatal NEC pathogenesis.  相似文献   

8.
9.
Suzuki M  Mihara M 《Cytokine》2012,58(3):344-350
Adiponectin (Ad) is an adipokine secreted from adipocytes. It is reported that Ad has many biological activities. However, its influence on inflammation is controversial. In the present study, we examined the influence of Ad on production of CCL20 from THP-1 macrophages. THP-1 macrophages were prepared from THP-1 monocytes by PMA treatment. THP-1 macrophages were cultured for 24h with Ad, IL-6, or TNF-α alone or with combinations of Ad and cytokines. CCL20 mRNA expression was then determined by real-time PCR. Full-length Ad (fAd) slightly but significantly induced CCL20 mRNA expression, and interestingly, co-stimulation with fAd and IL-6 or with fAd and TNF-α synergistically increased the expression of CCL20 mRNA. We explored the mechanism behind the synergistic effect of fAd and these cytokines. fAd did not affect the expression of receptors for IL-6 and TNF, and IL-6 and TNF-α did not increase the expression of the receptor for Ad in THP-1 macrophages. The increased expression of CCL20 by fAd is much higher in THP-1 macrophages compared with THP-1 monocytes. Furthermore, MMP-12 production was increased by IL-6 and TNF-α in THP-1 macrophages but it was not detectable in THP-1 monocytes. Treatment of fAd with MMP-12 induced globular Ad (gAd), and the expression of CCL20 in THP-1 macrophages was increased more potently by gAd than by fAd. MMP inhibitor (UK370106) inhibited the expression of CCL20 induced by co-stimulation with fAd and IL-6 or TNF-α. In conclusion, gAd played an important role in CCL20 expression, and MMP-12 induced by IL-6 or TNF-α was involved in the synergistic effect of fAd and cytokines.  相似文献   

10.
11.
In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α) translocation and vascular endothelial growth factor (VEGF) expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS) are involved in heart vascular regulation, endothelial NOS (e-NOS) and inducible NOS (i-NOS) expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events due to an immature anti-oxidant defensive system in newborn rat hearts.  相似文献   

12.
Neurexin-1 alpha (NRXN1α) belongs to the family of cell adhesion molecules (CAMs), which are involved in the formation of neuronal networks and synapses. NRXN1α gene mutations have been identified in neuropsychiatric diseases including Schizophrenia (SCZ) and Autism Spectrum Disorder (ASD). In order to get a better understanding of the pleiotropic behavioral manifestations caused by NRXN1α gene mutations, we performed a behavioral study of Nrxn1α heterozygous knock-out (+/-) mice and observed increased responsiveness to novelty and accelerated habituation to novel environments compared to wild type (+/+) litter-mates. However, this effect was mainly observed in male mice, strongly suggesting that gender-specific mechanisms play an important role in Nrxn1α-induced phenotypes.  相似文献   

13.
Clinical and epidemiological studies implicate IL-1 as an important mediator of perinatal inflammation. We tested the hypothesis that intra-amniotic IL-1α would induce pulmonary and systemic fetal inflammatory responses. Sheep with singleton fetuses were given an intra-amniotic injection of recombinant sheep IL-1α (100 μg) and were delivered 1, 3, or 7 days later, at 124 ± 1 days gestation (n=5-8/group). A separate group of sheep were given two intra-amniotic IL-1α injections (100 μg dose each): 7 days and again 1 day prior to delivery. IL-1α induced a robust increase in monocytes, neutrophils, lymphocytes, and IL-8 protein in bronchoalveolar lavage fluid. H(2)O(2) secretion was increased in inflammatory cells isolated from lungs of IL-1α-exposed lambs upon LPS challenge in vitro compared with control monocytes. T lymphocytes were recruited to the lung. IL-1β, cyclooxygenase-1, and cyclooxygenase-2 mRNA expression increased in the lung 1 day after intra-amniotic IL-1α exposure. Lung volumes increased 7 days after intra-amniotic IL-1α exposure, with minimal anatomic changes in air space morphology. The weight of the posterior mediastinal lymph node draining the lung and the gastrointestinal tract doubled, inducible nitric oxide synthase (NOSII)-positive cells increased, and Foxp3-positive T-regulatory lymphocytes decreased in the lymph node after IL-1α exposure. In the blood, neutrophil counts and plasma haptoglobin increased after IL-1α exposure. Compared with a single exposure, exposure to intra-amniotic IL-1α 7 days and again 1 day before delivery had a variable effect (increases in some inflammatory markers, but not pulmonary cytokines). IL-1α is a potent mediator of the fetal inflammatory response syndrome.  相似文献   

14.
Phagocytosis of naturally dying cells usually blocks inflammatory reactions in host cells. We have recently observed that clearance of cells dying through autophagy leads to a pro-inflammatory response in human macrophages. Investigating this response further, we found that during engulfment of MCF-7 or 293T cells undergoing autophagic death, but not apoptotic or anoikic ones, caspase-1 was activated and IL-1β was processed, then secreted in a MyD88-independent manner. Autophagic dying cells were capable of preventing some LPS-induced pro-inflammatory responses, such as TNFα, IL-6 and IL-8 induction, but synergized with LPS for IL-1β production. Caspase-1 inhibition prevented macrophage IL-1β release triggered by the dying cells and also other pro-inflammatory cytokines which were not formed in the presence of IL-1 receptor antagonist anakinra either. IL-1β secretion was also observed using calreticulin knock down or necrostatin treated autophagic MCF-7 cells and it required phagocytosis of the dying cells which led to ATP secretion from macrophages. Blocking K (+) efflux during phagocytosis, the presence of apyrase, adding an antagonist of the P2X7 receptor or silencing the NOD-like receptor protein NALP3 inhibited IL-1β secretion. These data suggest that during phagocytosis of autophagic dying cells ATP, acting through its receptor, initiates K (+) efflux, inflammasome activation and secretion of IL-1β, which initiates further pro-inflammatory events. Thus, autophagic death of malignant cells and their clearance may lead to immunogenic response.  相似文献   

15.
Type I Interferon (IFN) is one of the first lines of defense against viral infection. Plasmacytoid dendritic cells (pDCs) are professional IFN-α-producing cells that play an important role in the antiviral immune response. Previous studies have reported that IFN-α production is impaired in chronic hepatitis B (CHB) patients. However, the mechanisms underlying the impairment in IFN-α production are not fully understood. Here, we report that plasma-derived hepatitis B surface antigen (HBsAg) and HBsAg expressed in CHO cells can significantly inhibit toll like receptor (TLR) 9-mediated Interferon-α (IFN-α) production in peripheral blood mononuclear cells (PBMCs) from healthy donors. Further analysis indicated that monocytes participate in the inhibitory effect of HBsAg on pDCs through the secretion of TNF-α and IL-10. Furthermore, TLR9 expression on pDCs was down-regulated by TNF-α, IL-10 and HBsAg treatment. This down-regulation may partially explain the inhibition of IFN-α production in pDCs. In conclusion, we determined that HBsAg inhibited the production of IFN-α by pDCs through the induction of monocytes that secreted TNF-α and IL-10 and through the down-regulation of TLR9 expression on pDCs. These data may aid in the development of effective antiviral treatments and lead to the immune control of the viral infections.  相似文献   

16.
Purα is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Purα in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Purα, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Purα positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Purα-negative cells were less efficient in DNA damage repair. Purα-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Purα is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Purα physically associates with TFIIH. Thus, Purα has a role in NER and the repair of UVC-induced DNA damage.Key words: purα, ultraviolet radiation, DNA damage, DNA repair, nucleotide excision repair, TFIIH  相似文献   

17.
18.
19.
IL-1β is a major regulator of islet inflammation in type 2 diabetes. Several factors contribute to the induction of islet-derived IL-1β, including glucose, free fatty acids, and leptin. A recent report in Nature Immunology (Masters et?al., 2010) identifies amyloid polypeptide as an additional enhancer of IL-1β production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号