首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.  相似文献   

3.
4.
5.
Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1–treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.  相似文献   

6.
7.
目的:研究PES1蛋白与雄激素受体(An)之间的相互作用。方法:利用免疫共沉淀实验检测PES1蛋白与AR之间的相互作用,并进行相互作用定位;利用Western印迹研究PESl对乳腺癌细胞内AR表达水平的影响。结果:免疫共沉淀实验显示PES1蛋白与AR存在相互作用;PES1蛋白的1—110、111-220、221-320和311-588氨基酸残基(aa)区域均能与AR结合,415~588aa不能结合AR;AR的651-918aa区域与PESl结合。PESl不能调节乳腺癌细胞AR的表达水平。结论:PES1多个区域均能与AR相互作用,并且主要结合在AR的转录激活结构域2,为进一步探讨PES1对AR功能的调节奠定了基础。  相似文献   

8.
9.
本研究旨在证实鞘脂活化蛋白C(saposin C)对雄激素受体(AR)多泛素化降解的影响及其机制. 通过将真核表达载体saposin C转染LNCaP细胞,发现saposin C上调AR的蛋白水平和转录激活活性. 进一步将野生型和突变型泛素质粒Ubwt和UbK48R分别与saposin C 共转染LNCaP细胞发现,saposin C能够促进AR蛋白的单泛素化形式的稳定性,抑制AR的多泛素化修饰及其在蛋白酶体中的降解. 其分子机制是saposin C、Ub和AR三者形成复合体,抑制了AR的进一步多泛素化过程. 同时还发现,在这一机制中,细胞内低浓度的雄激素(0.1 nmol/L)与saposin C具有协同作用.  相似文献   

10.
11.
A monoclonal antibody to the androgen receptor was applied to fine needle aspirates from patients with benign and malignant prostatic disease. The series includes six patients with benign hyperplasia and 24 patients with prostatic carcinomas. The androgen receptor was detected in most nuclei of both benign and malignant epithelial cells. The intensity of immunostaining varied. No obvious relation was observed between the intensity of the staining in benign versus malignant cells. In addition no clear differences were found in the proportion of androgen receptor positive cells in benign aspirates as compared with aspirates from well differentiated or moderately well differentiated prostatic carcinomas. The relative number of androgen receptor positive cells was highest in smears from poorly differentiated prostatic carcinomas.  相似文献   

12.
本文主要研究肾阳虚(kidney yang deficiency)小鼠血清睾酮及性腺雄激素受体基因的表达,旨在揭示淫羊藿苷(icariin)对肾阳虚症状的影响.雄性小鼠随机分为6组,除正常组注射生理盐水外,其余组注射氢化可的松15 d;再分别给大、中、小剂量组淫羊藿苷,阳性组甲基睾酮,正常组和模型对照组蒸馏水,灌胃15 d.放射免疫法测血清中睾酮含量; RT-PCR和免疫组织化学方法检测雄激素受体基因在性腺组织中mRNA和蛋白质的表达情况.对照组小鼠平均体重最轻,与正常组比较差异显著(P<0.05).对照组小鼠血清睾酮的含量显著低于正常组(P<0.05);大、中剂量给药组,阳性组睾酮与正常组相比差异不显著(P>0.05);性腺组织中,对照组雄激素受体和mRNA比正常组表达量低,差异显著(P<0.05);中、小剂量给药组,阳性组雄激素受体和mRNA与正常组相比差异不显著(P>0.05). 结果表明,肾阳虚小鼠血清睾酮含量,性腺雄激素受体mRNA和蛋白质的表达与正常组相比均有所下降,淫羊藿苷能够抑制其下降,缓解肾阳虚症状.  相似文献   

13.
Spinal muscular atrophy (SMA) is a devastating and often fatal neurodegenerative disease that affects spinal motor neurons and leads to progressive muscle wasting and paralysis. The survival of motor neuron (SMN) gene is mutated or deleted in most forms of SMA, which results in a critical reduction in SMN protein. Motor neurons appear particularly vulnerable to reduced SMN protein levels. Therefore, understanding the functional role of SMN in protecting motor neurons from degeneration is an essential prerequisite for the design of effective therapies for SMA. To this end, there is increasing evidence indicating a key regulatory antiapoptotic role for the SMN protein that is important in motor neuron survival. The aim of this review is to highlight key findings that support an antiapoptotic role for SMN in modulating cell survival and raise possibilities for new therapeutic approaches.  相似文献   

14.
采用染色质免疫共沉淀技术在全基因组水平筛选雄激素非依赖性前列腺癌细胞LNCaP-AI的雄激素受体结合位点,行高通量测序及生物信息学分析共得到2 876个peak(pvalue〈1×10–5),peak平均长度为673 bp;将peak序列定位到Hg19基因组,共有1 865个靶基因,其中fold enrichment≥10的基因有425个。对peak相关基因进行GO分析发现,与细胞、细胞组分、细胞过程、结合、细胞器相关的基因位列前五位;对peak相关基因进行通路分析发现,与黏着斑、代谢通路、癌症中的转录错误调控、嘌呤代谢等信号通路相关的基因占大多数。筛选出7个候选AR靶基因,采用Real-time qPCR技术分析它们在LNCaP-AI细胞和雄激素依赖性前列腺癌细胞LNCaP中对DTH刺激的反应性,发现DHT刺激可改变7个候选AR靶基因在LNCaP-AI细胞中的表达,为进一步研究雄激素依赖性前列腺癌向非依赖性前列腺癌发展的过程中雄激素受体及其调控的下游靶基因功能起着至关重要的作用。  相似文献   

15.
Despite earlier detection and recent advances in surgery and radiation, prostate cancer is second only to lung cancer in male cancer deaths in the United States. Hormone therapy in the form of medical or surgical castration remains the mainstay of systemic treatment in prostate cancer. Over the last 15 years with the clinical use of prostate specific antigen (PSA), there has been a shift to using hormone therapy earlier in the disease course and for longer duration. Despite initial favorable response to hormone therapy, over a period of time these tumors will develop androgen‐independence that results in death. The androgen receptor (AR) is central to the initiation and growth of prostate cancer and to its response to hormone therapy. Analyses have shown that AR continues to be expressed in androgen‐independent tumors and AR signaling remains intact as demonstrated by the expression of the AR regulated gene, PSA. Androgen‐independent prostate cancers have demonstrated a variety of AR alterations that are either not found in hormone naïve tumors or found at lower frequency. These changes include AR amplification, AR point mutation, and changes in expression of AR co‐regulatory proteins. These AR changes result in a “super AR” that can respond to lower concentrations of androgens or to a wider variety of agonistic ligands. There is also mounting evidence that AR can be activated in a ligand independent fashion by compounds such as growth factors or cytokines working independently or in combination. These growth factors working through receptor tyrosine kinase pathways may promote AR activation and growth in low androgen environments. The clinical significance of these AR alterations in the development and progression of androgen‐independent prostate cancer remains to be determined. Understanding the changes in AR signaling in the evolution of androgen‐independent prostate cancer will be key to the development of more effective hormone therapy. © 2003 Wiley‐Liss, Inc.  相似文献   

16.
17.
To purify the androgen receptor (AR) efficiently from baculovirus expression system, we fused 6 histidine residues with the N-terminal domain of AR as a tag to specifically bind to Ni+2-affinity column. Our data indicated that adding androgen can increase the binding capacity of his-tag AR to the Ni+2-affinity column, and this increased binding capacity of AR could be due to the exposure of histidine residues of N-terminal domain induced by androgen. The androgen-enhanced binding to Ni+2-column also correlated with the increasing solubility of AR. Electrophoretic mobility shift assay further indicated that only purified AR could interact with androgen response element. Together, our data suggest that the binding of androgen to the hormone binding domain of AR may result in the conformational change of the N-terminal domain of AR and increase the hydrophilic property of AR.  相似文献   

18.
19.
Androgenic compounds induce an interaction between the NH2- and COOH-terminal regions (N–C interaction) of androgen receptor (AR). We describe a rapid yeast bioassay for androgenic and anti-androgenic compounds based on androgen-dependent β-catenin-enhanced N–C interaction. The bioassay was also effective at detecting compounds that inhibit the N–C interaction in ways that do not involve binding to the ligand-binding domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号