首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial glycogen is a polyglucose storage compound that is thought to prolong viability during stationary phase. However, a specific role for glycogen has not been determined. We have characterized SMEG53, a temperature-sensitive mutant of Mycobacterium smegmatis that contains a mutation in glgE, encoding a putative glucanase. This mutation causes exponentially growing SMEG53 cells to stop growing at 42 degrees C in response to high levels of glycogen accumulation. The mutation in glgE is also associated with an altered growth rate and colony morphology at permissive temperatures; the severity of these phenotypes correlates with the amount of glycogen accumulated by the mutant. Suppression of the temperature-sensitive phenotype, via a decrease in glycogen accumulation, is mediated by growth in certain media or multicopy expression of garA. The function of GarA is unknown, but the presence of a forkhead-associated domain suggests that this protein is a member of a serine-threonine kinase signal transduction pathway. Our results suggest that in M. smegmatis glycogen is continuously synthesized and then degraded by GlgE throughout exponential growth. In turn, this constant recycling of glycogen controls the downstream availability of carbon and energy. Thus, in addition to its conventional storage role, glycogen may also serve as a carbon capacitor for glycolysis during the exponential growth of M. smegmatis.  相似文献   

2.
3.
During murine peri-implantation development, the egg cylinder forms from a solid cell mass by the apoptotic removal of inner cells that do not contact the basement membrane (BM) and the selective survival of the epiblast epithelium, which does. The signaling pathways that mediate this fundamental biological process are largely unknown. Here we demonstrate that Rac1 ablation in embryonic stem cell-derived embryoid bodies (EBs) leads to massive apoptosis of epiblast cells in contact with the BM. Expression of wild-type Rac1 in the mutant EBs rescues the BM-contacting epiblast, while expression of a constitutively active Rac1 additionally blocks the apoptosis of inner cells and cavitation, indicating that the spatially regulated activation of Rac1 is required for epithelial cyst formation. We further show that Rac1 is activated through integrin-mediated recruitment of the Crk-DOCK180 complex and mediates BM-dependent epiblast survival through activating the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Our results reveal a signaling cascade triggered by cell-BM interactions essential for epithelial morphogenesis.All epithelial sheets and tubes rest upon a basement membrane (BM), a thin mat of specialized extracellular matrix (ECM) consisting of laminins, type IV collagens, perlecan, and nidogens. The BM provides essential survival signals to protect epithelial cells from apoptosis, in addition to its role in cell adhesion, migration, proliferation, and polarity orientation. In the developing chick retina, removal of the retinal BM by collagenase digestion resulted in severe apoptosis of retinal neuroepithelial cells (17). In mice, targeted deletion of the genes for the BM component laminins or perlecan caused BM defects and various degrees of apoptosis of cells that attach to the BM (34, 41, 42). Also, mammary epithelial cells can survive for a long period of time when grown on a reconstituted basement membrane derived from Engelbreth-Holmof Swarm (EHS) tumor (Matrigel), but they die by apoptosis when grown on plastic, fibronectin, or type I collagen despite their firm attachment on these substrates (2, 11, 36). A similar response of keratinocytes to BM type IV collagen versus non-BM matrix proteins was observed in bioengineered human skin equivalents (40). These results suggest that the BM provides a unique microenvironment for the survival of associated epithelial cells.Embryoid body (EB) differentiation has been used to study epithelial morphogenesis and early embryogenesis. When cultured in suspension as small aggregates, mouse embryonic stem (ES) cells adhere strongly together and form spherical EBs. The outer cells of the EB differentiate to become endoderm cells, which secrete laminins, type IV collagen, perlecan, and other BM components that assemble into an underlying BM equivalent to the embryonic BM separating extraembryonic endoderm from the epiblast. Integrin α6β1 in the epiblast cells and integrin α5β1 in the endoderm cells redistribute from a pericellular location to a predominantly sub-basement membrane location (28). Following BM formation, the epiblast cells adjacent to the BM polarize to become a pseudostratified columnar epithelium (the epiblast epithelium), whereas the inner cells not in contact with the BM undergo apoptosis and are selectively removed by phagocytosis/autophagy, creating a proamniotic-like cavity. That the BM is essential for these sequential processes is evidenced by the observation that targeted deletion of the laminin γ1 gene in EBs blocks BM assembly, subsequent epiblast epithelialization, and then apoptosis-dependent cavitation (32, 42). These differentiation processes recapitulate peri-implantation development and provide a tractable in vitro model for the study of apoptosis and BM-dependent cell survival during epithelial morphogenesis.While BM-dependent cell survival is often coupled with apoptotic removal of centrally located cells not in contact with the BM during morphogenesis of epithelial cysts such as mammary glandular acini and embryonic mouse egg cylinders (7, 29), the molecular mechanisms underlying this fundamental process are poorly understood. Elegant studies on teratocarcinoma cell-derived EBs have suggested that formation of an epithelial cyst as they develop is the result of the interplay of two signals (7). One is a death signal from the endoderm that induces apoptosis of the centrally located cells to create a cavity; the other is a rescue signal mediated by contact with the BM and is required for the survival of the newly formed epiblast epithelium. Subsequent studies have revealed that bone morphogenetic protein 2 (BMP-2) is highly expressed in the endoderm and that expression of a dominant-negative (DN) BMP receptor in EBs blocked cavitation, suggesting BMP-2 to be a death factor (6). The survival signals from the interaction of the epiblast cells with the BM were studied by treating the EBs with polyclonal antiserum against membrane glycoproteins consisting of ECM adhesion receptors. The antiserum treatment induced programmed cell death in the BM-contacting epiblast layer. However, the identities of the receptors and the downstream signaling molecules involved have not been explored.In this study, we utilized EBs differentiated from genetically modified ES cells to investigate the mechanisms of BM-dependent cell survival. We show that targeted deletion of the Rac1 gene in EBs leads to massive apoptosis of epiblast cells in contact with the BM. Rac1 is activated in a BM- and integrin-dependent fashion. Stable expression of wild-type Rac1 in the mutant EBs rescues the BM-contacting epiblast, while expression of a constitutively active Rac1 also blocks the apoptosis of inner cells and cavitation. These results suggest that the spatial activation of Rac1 is essential not only for BM-dependent epiblast survival but also for apoptosis-mediated cavitation. We further show that Crk mediates Rac1 activation by recruiting the Rac1-specific activator DOCK180 to the cell-BM adhesions and that the phosphatidylinositol 3-kinase (PI3K)-Akt pathway acts downstream of Rac1 to promote BM-dependent survival. Collectively, our results have established a key role for Rac1 in embryonic epithelial morphogenesis and have uncovered a signaling pathway that mediates BM-dependent epithelial survival.  相似文献   

4.
5.
6.
A new biotechnological process for the production of testosterone (TS) has been developed to turn the model strain Mycobacterium smegmatis suitable for TS production to compete with the current chemical synthesis procedures. We have cloned and overexpressed two genes encoding microbial 17β‐hydroxysteroid: NADP 17‐oxidoreductase, from the bacterium Comamonas testosteroni and from the fungus Cochliobolus lunatus. The host strains were M. smegmatis wild type and a genetic engineered androst‐4‐ene‐3,17‐dione (AD) producing mutant. The performances of the four recombinant bacterial strains have been tested both in growing and resting‐cell conditions using natural sterols and AD as substrates respectively. These strains were able to produce TS from sterols or AD with high yields. This work represents a proof of concept of the possibilities that offers this model bacterium for the production of pharmaceutical steroids using metabolic engineering approaches.  相似文献   

7.
8.
REDD1 is a highly conserved stress response protein that is upregulated following many types of cellular stress, including hypoxia, DNA damage, energy stress, ER stress, and nutrient deprivation. Recently, REDD1 was shown to be involved in dexamethasone induced autophagy in murine thymocytes. However, we know little of REDD1’s function in mature T cells. Here we show for the first time that REDD1 is upregulated following T cell stimulation with PHA or CD3/CD28 beads. REDD1 knockout T cells exhibit a defect in proliferation and cell survival, although markers of activation appear normal. These findings demonstrate a previously unappreciated role for REDD1 in T cell function.  相似文献   

9.
10.
Mycobacterium tuberculosis employs various virulence strategies to subvert host immune responses in order to persist and cause disease. Interaction of M. tuberculosis with mannose receptor on macrophages via surface-exposed lipoarabinomannan (LAM) is believed to be critical for cell entry, inhibition of phagosome-lysosome fusion, and intracellular survival, but in vivo evidence is lacking. LprG, a cell envelope lipoprotein that is essential for virulence of M. tuberculosis, has been shown to bind to the acyl groups of lipoglycans but the role of LprG in LAM biosynthesis and localization remains unknown. Using an M. tuberculosis lprG mutant, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. The lprG mutant had a normal quantity of LAM in the cell envelope, but its surface was altered and showed reduced expression of surface-exposed LAM. Functionally, the lprG mutant was defective for macrophage entry and inhibition of phagosome-lysosome fusion, was attenuated in macrophages, and was killed in the mouse lung with the onset of adaptive immunity. This study identifies the role of LprG in surface-exposed LAM expression and provides in vivo evidence for the essential role surface LAM plays in M. tuberculosis virulence. Findings have translational implications for therapy and vaccine development.  相似文献   

11.
Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells.  相似文献   

12.
Members of the SNARE-family of proteins are known to be key regulators of the membrane-membrane fusion events required for intracellular membrane traffic. The ubiquitously expressed SNARE protein SNAP-23 regulates a wide variety of exocytosis events and is essential for mouse development. Germline deletion of SNAP-23 results in early embryonic lethality in mice, and for this reason we now describe mice and cell lines in which SNAP-23 can be conditionally-deleted using Cre-lox technology. Deletion of SNAP-23 in CD19-Cre expressing mice prevents B lymphocyte development and deletion of SNAP-23 using a variety of T lymphocyte-specific Cre mice prevents T lymphocyte development. Acute depletion of SNAP-23 in mouse fibroblasts leads to rapid apoptotic cell death. These data highlight the importance of SNAP-23 for cell survival and describe a mouse in which specific cell types can be eliminated by expression of tissue-specific Cre-recombinase.  相似文献   

13.
14.
Mycobacterium smegmatis is a commonly used mycobacterial model system. Here, we show that M. smegmatis protects itself against elevated salinity by synthesizing ectoine and hydroxyectoine and characterize the phenotype of a nonproducing mutant. This is the first analysis of M. smegmatis halotolerance and of the molecular mechanism that supports it.  相似文献   

15.
Abstract The penicillin-binding proteins (PBPs) of Mycobacterium smegmatis were studied. Five PBPs ranging in M r from approx. 114000 to 25000 were detected in the cytoplasmic membrane. The affinities of the PBPs for selected β-lactam antibiotics were determined. Most of the antibiotics bound to PBPs 3 and 4 at low concentrations. A penicillin-susceptible mutant and a cefmetazole-resistant mutant were isolated by selection in vitro. The PBPs of these mutants were identical to those of the parent strain. The affinity of cefmetazole for the individual PBPs was identical in each mutant.  相似文献   

16.
In early stationary phase of growth, Mycobacterium smegmatis cultures accumulate amylooligosaccharides (alpha 1 leads to 4-glucooligosaccharides) up to the undecasaccharide. Although M. smegmatis also makes an acylated polymethylpolysaccharide that is predominantly and alpha 1 leads to 4-glucan, we conclude that these oligosaccharides are precursors of glycogen rather than lopopolysaccharide.  相似文献   

17.
Mycobacteria contain high levels of the disaccharide trehalose in free form as well as within various immunologically relevant glycolipids such as cord factor and sulfolipid-1. By contrast, most bacteria use trehalose solely as a general osmoprotectant or thermoprotectant. Mycobacterium tuberculosis and Mycobacterium smegmatis possess three pathways for the synthesis of trehalose. Most bacteria possess only one trehalose biosynthesis pathway and do not elaborate the disaccharide into more complex metabolites, suggesting a distinct role for trehalose in mycobacteria. We disabled key enzymes required for each of the three pathways in M. smegmatis by allelic replacement. The resulting trehalose biosynthesis mutant was unable to proliferate and enter stationary phase unless supplemented with trehalose. At elevated temperatures, however, the mutant was unable to proliferate even in the presence of trehalose. Genetic complementation experiments showed that each of the three pathways was able to recover the mutant in the absence of trehalose, even at elevated temperatures. From a panel of trehalose analogs, only those with the native alpha,alpha-(1,1) anomeric stereochemistry rescued the mutant, whereas alternate stereoisomers and general osmo- and thermoprotectants were inactive. These findings suggest a dual role for trehalose as both a thermoprotectant and a precursor of critical cell wall metabolites.  相似文献   

18.
Mycobacterium smegmatis is a species of rapidly growing saprophytes with a number of properties that make it an effective vaccine vector. Recombinant M. smegmatis expressing protective antigens of different pathogens and molecules modulating the immune responses offers some potential for reduction of the burden of tuberculosis, HIV and hepatitis B infections. This paper discusses the molecular methods used to generate recombinant M. smegmatis and the results obtained with some of these recombinants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号