首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis thaliana ecotype Columbia (Col-0) is susceptible to the yellow strain of cucumber mosaic virus [CMV(Y)], whereas ecotype C24 is resistant to CMV(Y). Comprehensive analyses of approximately 9,000 expressed sequence tags in ecotypes Col-0 and C24 infected with CMV(Y) suggested that the gene expression patterns in the two ecotypes differed. At 6, 12, 24 and 48 h after CMV(Y) inoculation, the expression of 6, 30, 85 and 788 genes, respectively, had changed in C24, as opposed to 20, 80, 53 and 150 genes in CMV(Y)-infected Col-0. At 12, 24 and 48 h after CMV(Y) inoculation, the abundance of 3, 10 and 55 mRNAs was altered in both ecotypes. However, at 6 h after CMV(Y) inoculation, no genes were co-induced or co-suppressed in both ecotypes. This differential pattern of gene expression between the two ecotypes at an early stage of CMV(Y) infection indicated that the cellular response for resistance may differ from that resulting in susceptibility at the level detectable by the macroarray. According to the expression pattern at various stages of infection, the expression of many genes could be grouped into clusters using cluster analysis. About 100 genes that encode proteins involved in chloroplast function were categorized into clusters 1 and 4, which had a differentially lower expression in CMV(Y)-inoculated C24. The expression of various genes encoding proteins in the endomembrane system belonged to clusters 2 and 4, which were induced in CMV(Y)-inoculated C24 and Col-0 leaves. Characterization of CMV(Y)-altered gene expression in the two ecotypes will contribute to a better understanding of the molecular basis of compatible and incompatible interactions between virus and host plants.  相似文献   

2.
Background and Aims The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant–herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings.Methods Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds.Key Results Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific.Conclusions The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways.  相似文献   

3.
4.
5.
6.
为鉴定不同抗性苹果(Malus domestica)品种响应轮纹病菌胁迫的抗性相关蛋白表达差异, 以抗病品种华月及易感品种金冠为试材, 采用高通量同位素标记定量(IBT)技术结合液相色谱-串联质谱(LC-MS)鉴定技术, 对病原菌处理前后抗、感病品种叶片的蛋白质组差异表达进行分析, 共鉴定出171个差异表达蛋白(DEPs)。GO富集及KEGG通路分析表明, 在细胞组分、分子功能和生物过程3类中共注释到686个GO条目, 其中52个DEPs注释于KEGG通路的18个显著差异途径(P<0.05)。亚细胞定位预测分析表明, 171个DEPs中有170个分别定位于8类细胞器。蛋白功能注释分析表明, 46个DEPs注释于7类抗性相关蛋白, 包括类甜蛋白、过氧化物酶、多酚氧化酶、过敏原蛋白、几丁质酶、内切葡聚糖酶以及主乳胶蛋白。此外, 还对抗性相关蛋白的表达特点及基因定量结果进行了分析。该研究结果可为进一步解析抗、感病苹果品种应答轮纹病菌胁迫的抗性机制提供参考。  相似文献   

7.
8.
We report a comprehensive primary metabolite profiling of sunflower (Helianthus annuus) genotypes displaying contrasting behavior to Sclerotinia sclerotiorum infection. Applying a GC-MS-based metabolite profiling approach, we were able to identify differential patterns involving a total of 63 metabolites including major and minor sugars and sugar alcohols, organic acids, amino acids, fatty acids and few soluble secondary metabolites in the sunflower capitulum, the main target organ of pathogen attack. Metabolic changes and disease incidence of the two contrasting genotypes were determined throughout the main infection period (R5.2-R6). Both point-by-point and non-parametric statistical analyses showed metabolic differences between genotypes as well as interaction effects between genotype and time after inoculation. Network correlation analyses suggested that these metabolic changes were synchronized in a time-dependent manner in response to the pathogen. Concerted differential metabolic changes were detected to a higher extent in the susceptible, rather than the resistant genotype, thereby allowing differentiation of modules composed by intermediates of the same pathway which are highly interconnected in the susceptible line but not in the resistant one. Evaluation of these data also demonstrated a genotype specific regulation of distinct metabolic pathways, suggesting the importance of detection of metabolic patterns rather than specific metabolite changes when looking for metabolic markers differentially responding to pathogen infection. In summary, the GC-MS strategy developed in this study was suitable for detection of differences in carbon primary metabolism in sunflower capitulum, a tissue which is the main entry point for this and other pathogens which cause great detrimental impact on crop yield.  相似文献   

9.
Previous research into the genetic mechanisms of benzenoid and phenylpropanoid volatile biosynthesis has suggested the potential for metabolic flux, in which phenylalanine substrate dedicated to one pathway branch (i.e., benzenoid production) could alter volatile production in other pathways (i.e., phenylpropanoid production). However, little research has been conducted in planta to verify the validity of this hypothesis. We examined the emission rates of representative benzenoid and phenylpropanoid volatiles from seven cultivars of Phlox subulata L. to determine if cultivars had metabolic flux differences in terms of these two compound categories. Cultivars that produced large quantities of methyl benzoate and benzaldehyde were found to emit little or no phenylacetaldehyde and 2-phenylethanol, and vice versa. These results suggest that P. subulata cultivars experience phenylalanine substrate flux directed toward one pathway and away from the alternate branch. Such a pattern may be the result of differential selection pressures, in which gene expression has been altered to direct flux away from either benzenoid or phenylpropanoid production. Moreover, if these patterns hold true in wild populations, metabolic flux may lead to differential pollinator behavior and further phenotypic evolution. Future research using molecular tools could verify the role of metabolic flux in determining scent phenotypes and pinpoint the exact nature of the genetic mutations leading to phenotypic differences in odor.  相似文献   

10.
11.
Park JY  Jin J  Lee YW  Kang S  Lee YH 《Plant physiology》2009,149(1):474-486
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying pathogenesis and host defense in two well-studied model plants.  相似文献   

12.
13.
14.
15.
16.
Hot pepper (Capsicum annuum) plants exhibit a hypersensitive response (HR) against infection by many tobamoviruses. A clone (CaPR-4) encoding a putative pathogenesis-related protein 4 was isolated by differential screening of a cDNA library prepared from resistant pepper plant leaves inoculated with tobacco mosaic virus (TMV) pathotype P0. The predicted amino acid sequence of CaPR-4 is very similar to those of other plant PR-4s. Southern blot analysis showed that small gene families of PR-4-related sequences were present in the pepper genome. Hot pepper cultivar Bugang, resistant to TMV-P0 and susceptible to TMV-P1.2, induced CaPR-4 expression by pathotype P0 inoculation in inoculated and systemic leaves, but not by pathotype P1.2. Effects of exogenously applied abiotic elicitors upon the CaPR-4 expression were also examined. The expression of the CaPR-4 gene was stimulated by methyl jasmonate (MeJA), ethephon and wounding treatment. However, application of salicylic acid (SA) did not trigger the expression. Evidence is emerging that jasmonic acid and ethylene play key roles in the SA-independent pathways of plant-pathogen interaction. Taken together, these results suggest that the CaPR-4 gene is one of the defense-related genes conferring resistance on pepper plants by the SA-independent pathway and the cross-talk between signaling compounds, jasmonic acid and ethylene could have a great regulatory potential in a plant's defense against TMV.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号