首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The starvation survivability of seven Thermococcus strains isolated from four Japanese oil reservoirs was compared with that of Thermococcus strains from marine hydrothermal fields. 16S rDNA analyses showed the isolates to be closely related to Thermococcus litoralis. Growth of the isolates was dependent on amino acids, which were present at low concentrations in the oil reservoirs. At 80 degrees C in the formation water, strain CKU-1 from the oil reservoir showed a higher starvation survivability than strain KS-1 from the marine hydrothermal field. Crude oil did not affect the starvation survivability of strain CKU-1, but it reduced that of strain KS-1. These results indicate that strain CKU-1 could survive longer than stain KS-1 under the conditions of an oil reservoir. At 90 degrees C in artificial seawater without organic nutrients, the half-lives of the isolates were between 7.7 and 25.1 days. However, those of the strains from marine hydrothermal fields, except Thermococcus litoralis and Thermococcus chitonophagus, were less than 1.0 day. The higher starvation survivability is probably important for the hyperthermophiles to continue to exist in a hot subterranean oil reservoir where the supply of nutrients seems to be limited.  相似文献   

2.
超低渗油藏微生物吞吐技术的矿场试验   总被引:3,自引:0,他引:3  
【目的】通过对渭北低渗油藏内源微生物的研究,考察分离纯化的内源解烃菌产生表面活性剂和降解原油的能力、岩心驱替增油效率,同时验证其在超低渗油田单井吞吐矿场实验的应用效果,探讨微生物采油技术在超低渗油田提高采收率的工艺和可行性。【方法】采集超低渗油藏的油水样,应用油平板进行产表面活性剂解烃菌的分离,通过生理生化特性和16S r RNA基因序列分析对菌株进行种属鉴定,评价其油藏环境适应性,利用内源-外源功能微生物复配体系进行原油降解,在填砂管和岩心物模上进行驱油实验,将优化好的微生物复配体系应用于现场实施单井吞吐工艺的实验。【结果】从渭北某区块超低渗油藏的原油样品中分离得到一株铜绿假单胞菌(Pseudomonas aeruginosa),命名为WB-001。该菌株可使发酵液的表面张力降至29.04 m N/m,使渭北原油蜡质含量降至8.48%。填砂管实验表明WB-001与外源枯草芽胞杆菌OPUS-HOB-001(Bacillus subtilis)复配后,驱油效率较单纯水驱提高了9.72%;岩心驱替实验较水驱提高12.54%。微生物单井吞吐措施后,平均日产油由措施前的0.42 t增加到0.89 t,累计增油44.47 t;原油降粘率为11.70%,降凝率为9.41%,采出水表面张力降低幅度为18.93%。【结论】通过详细的室内评估和成功的矿场实验,证明微生物采油技术在超低渗油藏有一定的应用可行性,并为后续规模化应用提供了理论基础和物质基础,为超低渗油田的高效精细开发探索一条新的途径。  相似文献   

3.
Summary The Middle-Upper Jurassic section in the Arabian Gulf basin forms one of the most prolific sequences in the world, in which an excellent combination of source, reservoir and seal rocks was developed within a major sedimentary cycle. The sequence consists of a) relatively quiet deep-water mudstone, wackestone and shale (source facies), b) shallow-water high enery grainstone and packstone (reservoir facies), and c) very shallow supratidal anhydrite (seal facies). The principal factors, which controlled the sedimentation of this sequence, are considered to have been eustatic sea-level change and epeirogenic movement of carbonate shelves. The Jurassic reservoirs of the major oil fields in this region show exceptionally high porosity up to 30% for their relatively old geologic age (some 150 million years old) and depths of burial in the range between 1,200 and more than 2,700 m. Porosity occurs most commonly as intergranular/remnant primary pore spaces, but its distribution is quite uneven and very complicated. To account for the existence of such high porosity (and permeability) in the Jurassic reservoirs, probable geological, physical and chemical factors for preserving and enhancing porosity (and permeability), such as acidic formation fluids, reduced fluid mobility, tectonic forces, ductility of intercalated beds (e.g. anhydrite), and dolomitization were examined. It has been observed in various fields in the region that oilsaturated portions of the Jurassic reservoirs tend to retain higher porosity than the surrounding water-saturated zones. Porosity preservation by hydrocarbons is possible primarily because of excess hydrocarbon pressure and of reduced mobility of water in such oil-saturated zones. To continue sediment diagenesis, a steady supply of minerals by formation water and the mobility of the water may have been essential. Because the entrapment of oil in the Jurassic reservoirs in the region is considered to have been as late as early Tertiary, some other (pre-migration) mechanisms which may have worked in the earlier geologic stages for preserving and creating porosity (and permeability) seem to be necessary.  相似文献   

4.
Reservoir souring in offshore oil fields is caused by hydrogen sulphide (H2S) produced by sulphate-reducing bacteria (SRB), most often as a consequence of sea water injection. Biocide treatment is commonly used to inhibit SRB, but has now been replaced by nitrate treatment on several North Sea oil fields. At the Statfjord field, injection wells from one nitrate-treated reservoir and one biocide-treated reservoir were reversed (backflowed) and sampled for microbial analysis. The two reservoirs have similar properties and share the same pre-nitrate treatment history. A 16S rRNA gene-based community analysis (PCR-DGGE) combined with enrichment culture studies showed that, after 6 months of nitrate injection (0.25 mM NO3 ), heterotrophic and chemolithotrophic nitrate-reducing bacteria (NRB) formed major populations in the nitrate-treated reservoir. The NRB community was able to utilize the same substrates as the SRB community. Compared to the biocide-treated reservoir, the microbial community in the nitrate-treated reservoir was more phylogenetically diverse and able to grow on a wider range of substrates. Enrichment culture studies showed that SRB were present in both reservoirs, but the nitrate-treated reservoir had the least diverse SRB community. Isolation and characterisation of one of the dominant populations observed during nitrate treatment (strain STF-07) showed that heterotrophic denitrifying bacteria affiliated to Terasakiella probably contributed significantly to the inhibition of SRB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
As part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on the prediction of fracture formation in cryoprotective agents. Fractures had been previously observed in 1 ml samples of the cryoprotective agent cocktail DP6, contained in a standard 15 ml glass vial, and subjected to various cooling rates. These experimental observations were obtained by means of a cryomacroscope, which has been recently presented by the current research team. High and low cooling rates were found to produce very distinct patterns of cracking. The current study seeks to explain the observed patterns on the basis of stresses predicted from finite element analysis, which relies on a simple viscoelastic constitutive model and on estimates of the critical stress for cracking. The current study demonstrates that the stress, which results in instantaneous fracture at low cooling rates, is consistent with the stress to initiate fracture at high cooling rate. This consistency supports the credibility of the proposed constitutive model and analysis, and the unified criterion for fracturing, that is, a critical stress threshold.  相似文献   

6.
油藏是一个高温、高压、少氧、寡营养和封闭的极端环境,油田经过多年注水开发后,在油藏内部形成了相对稳定的微生物群落体系,这些微生物以石油烃分解为起始,形成了一个复杂的食物链,对油藏碳、硫和金属离子的元素地球化学循环起着非常重要的作用。微生物提高原油采收率技术(MEOR)是利用微生物及其代谢产物与油藏和原油发生作用来提高原油采收率的一种新技术,具有成本低、适应性强和环境友好等特点,因此有望成为未来化学驱后油藏和高含水油藏进一步提高采收率的重要手段。对油藏内源微生物及其介导的生化反应,微生物采油原理、发展历程和现场试验进行综述,并提出了未来的发展方向。  相似文献   

7.
It has been proposed that cortical bone derives its toughness by forming microcracks during the process of crack propagation (J. Biomech. 30 (1997) 763; J. Biomech. 33 (2000) 1169). The purpose of this study was to experimentally validate the previously proposed microcrack-based toughening mechanism in cortical bone. Crack initiation and propagation tests were conducted on cortical bone compact tension specimens obtained from the antlers of red deer. For these tests, the main fracture crack was either propagated to a predetermined crack length or was stopped immediately after initiating from the notch. The microcracks produced in both groups of specimens were counted in the same surface area of interest around and below the notch, and crack growth resistance and crack propagation velocity were analyzed. There were more microcracks in the surface area of interest in the propagation than in initiation specimens showing that the formation of microcracks continued after the initiation of a fracture crack. Crack growth resistance increased with crack extension, and crack propagation velocity vs. crack extension curves demonstrated the characteristic jump increase and decrease pattern associated with the formation of microcracks. The scanning electron micrographs of crack initiation and propagation displayed the formation of a frontal process zone and a wake, respectively. These results support the microcrack-based toughening mechanism in cortical bone. Bone toughness is, therefore, determined by its ability to form microcracks during fracture.  相似文献   

8.
Age-related changes in bone quality are mainly manifested in the reduced toughness. Since the post-yield deformation of bone is realized through microdamage formation (e.g., microcracking and diffuse damage), it is necessary to understand the mechanism of microdamage formation in bone in order to elucidate underlying mechanisms of age-related bone fractures. In this study, a two-dimensional shear lag model was developed to predict stress concentration fields around an initial crack in a mineral-collagen composite. In this model, non-linear elasticity was assumed for the collagen phase, and linear elasticity for the mineral. Based on the pattern of the stress concentration fields, the condition for microdamage formation was discussed. The results of our analyses indicate that: (1) an initial crack formed in mineral phase may cause stress concentration in the adjacent mineral layers; (2) the pattern of stress concentration fields depends not only on the spatial but also mechanical properties of the collagen and mineral phases; (3) the pattern of the stress concentration fields could determine either coalescence or scattering of nano cracks around the initial crack.  相似文献   

9.
Produced waters from the Barrancas and Chihuido de la Salina (CHLS) fields in Argentina had higher concentrations of sulfate than were found in the injection waters, suggesting that the formation waters in these reservoirs had a high sulfate concentration and that sulfate-reducing bacteria were inactive downhole. Incubation of produced waters with produced oil gave rapid reduction of sulfate to sulfide (souring) at 37 °C, some at 60 °C, but none at 80 °C. Alkylbenzenes and alkanes served as electron donor, especially in incubations with CHLS oil. Dilution with water to decrease the ionic strength or addition of inorganic phosphate did not increase souring at 37 or 60 °C. These results indicate that souring in these reservoirs is limited by the reservoir temperature (80 °C for the Barrancas and 65–70 °C for the CHLS field) and that souring may accelerate in surface facilities where the oil-water mixture cools. As a result, significant sulfide concentrations are present in these surface facilities. The activity and presence of chemolithotrophic Gammaproteobacteria of the genus Thiomicrospira, which represented 85 % of the microbial community in a water plant in the Barrancas field, indicated reoxidation of sulfide and sulfur to sulfate. The presence of these bacteria offers potential for souring control by microbial oxidation in aboveground facilities, provided that formation of corrosive sulfur can be avoided.  相似文献   

10.
It has recently been reported that losses of tight junction material could result from the freeze-fracture process. To verify this assumption, we tried to increase the possibility, if any, of losses of junction material, by inducing an important fragmentation of junctional fibrils by bathing ciliary epithelium in a 0.5M sucrose solution before glutaraldehyde fixation and freeze-fracturing at −160 °C. In spite of a significant redistribution of junctional material on both fracture faces, careful examination of complementary replicas and measurements of junction elements and interruption lengths showed that no loss of junctional material occurred in this tissue. The influence of physical parameters (i.e. temperature) on the preservation of the structural integrity of the tight junction during fracturing is now a problem to be considered.  相似文献   

11.

Laboratory evaluation of hyperthermophiles with the potential for Enhanced Oil Recovery (EOR) is often hampered by the difficulties in replicating the in situ growth conditions in the laboratory. In the present investigation, genome analysis was used to gain insights into the metabolic potential of a hyperthermophile to mobilize the residual oil from depleting high-temperature oil reservoirs. Here, we report the 1.9 Mb draft genome sequence of a hyperthermophilic anaerobic archaeon, Thermococcus sp. 101C5, with a GC content of 44%, isolated from a high-temperature oil reservoir of Gujarat, India. 101C5 possessed the genetic arsenal required for adaptation to harsh oil reservoir conditions, such as various heat shock proteins for thermo-adaptation, Trk potassium uptake system proteins for osmo-adaptation, and superoxide reductases against oxidative stress. Microbial Enhanced Oil Recovery (MEOR) potential of the strain was established by ascertaining the presence of genes encoding enzymes involved in the production of the metabolites such as hydrogen, bio-emulsifier, acetate, exopolysaccharide, etc. Production of these metabolites which pressurize the reservoir, emulsify the crude oil, lower the viscosity and reduce the drag, thus facilitating mobilization of the residual oil was experimentally confirmed. Also, the presence of crude oil degradative genes highlighted the ability of the strain to mobilize heavy residual oil, which was confirmed under simulated conditions in sand-pack studies. The obtained results demonstrated additional oil recoveries of 42.1% and 56.5% at 96 °C and 101 °C, respectively, by the strain 101C5, illustrating its potential for application in high-temperature oil reservoirs. To our best knowledge, this is the first report of genome analysis of any microbe assessed for its suitability for MEOR from the high-temperature oil reservoir.

  相似文献   

12.
The mechanical stability of biocatalyst particles in bioreactors is of crucial importance for applications of immobilized-cell technology in bioconversions. The common methods for evaluation of the strength of polymer beads (mostly force-to-fracture or tensile tests) are, however, not yet proven to be relevant for the assessment of their mechanical stability in bioreactors. Therefore, we tested fracture properties of gel materials and investigated their relevance for abrasion in bioreactors. Abrasion of gel beads was assumed to be a continuous fracturing of the bead surface. At first, three rheological properties were considered: stress at fracture; strain at fracture; and the total fracture energy. If stress at fracture is the most important property, beads having a similar fracture energy, but a smaller stress at fracture, would abrade faster in a bioreactor than beads with a larger stress at fracture; if fracture energy the determining factor, beads that require less energy to fracture would abrade faster than those having a larger fracture energy for the same fracture stress. To determine this, beads of kappa-carrageenan and agar (at two different polymer concentrations) were tested for abrasion in four identical bubble columns under the same operating conditions. Agar beads were expected to abrade faster than those of carrageenan because agar had either a lower stress at fracture or a lower fracture energy. However, no correlation between fracture properties and abrasion rate was found in any of the combinations tested. Carrageenan beads abraded faster than those of agar in all combinations. Furthermore, both the stress and strain at fracture of agar and carrageenan beads decreased during the run and those of carrageenan decreased faster, suggesting that the gels are liable to fatigue in different ways. This hypothesis was confirmed by oscillating experiments in which gel samples were subjected to repeated compressions below their fracture levels. Their resistance to compression clearly decreased with the number of oscillations. Fatigue is probably related to the development of microcracks and microfracture propagation within the material. We concluded that: (a) the use of tests based on bead rupture do not provide relevant information on the mechanical stability of gel beads to abrasion; and (b) abrasion of polymer beads is likely to be related to fatigue of the gel materials. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 517-529, 1997.  相似文献   

13.
为探索星形胶质细胞在血脑屏障内皮细胞紧密连接形成中的重要意义,通过内皮细胞系ECV304与星形胶质细胞体外接触共培养的方法,采用电镜及内皮细胞紧密连接的银染观察星形胶质细胞对内皮细胞系紧密连接的诱导作用。运用Millipore-ERS系统检测紧密连接的功能状况。结果发现,星形胶质细胞可以诱导内皮细胞系形成广泛而连续的紧密连接并产生较高的跨内皮阻抗(transendothelial electrical resistance,TER),于第10d可达321.3Ωcm^2。提示,星形胶质细胞可以诱导ECV304细胞产生紧密连接。同时,ECV304细胞与星形胶质细胞的体外共培养可以作为研究血脑屏障紧密连接结构与功能的一种可靠而简便的体外实验方法。  相似文献   

14.
The complexity of biological neural networks does not allow to directly relate their biophysical properties to the dynamics of their electrical activity. We present a reservoir computing approach for functionally identifying a biological neural network, i.e. for building an artificial system that is functionally equivalent to the reference biological network. Employing feed-forward and recurrent networks with fading memory, i.e. reservoirs, we propose a point process based learning algorithm to train the internal parameters of the reservoir and the connectivity between the reservoir and the memoryless readout neurons. Specifically, the model is an Echo State Network (ESN) with leaky integrator neurons, whose individual leakage time constants are also adapted. The proposed ESN algorithm learns a predictive model of stimulus-response relations in in vitro and simulated networks, i.e. it models their response dynamics. Receiver Operating Characteristic (ROC) curve analysis indicates that these ESNs can imitate the response signal of a reference biological network. Reservoir adaptation improved the performance of an ESN over readout-only training methods in many cases. This also held for adaptive feed-forward reservoirs, which had no recurrent dynamics. We demonstrate the predictive power of these ESNs on various tasks with cultured and simulated biological neural networks.  相似文献   

15.
Shallow-marine microporous limestones account for many carbonate reservoirs. Their formation, however, remains poorly understood. Due to the lack of recent appropriate marine analogues, this study uses a lacustrine counterpart to examine the diagenetic processes controlling the development of intercrystalline microporosity. Late Miocene lacustrine microporous micrites of the Madrid Basin (Spain) have a similar matrix microfabric as Cenomanian to Early Turonian shallow-marine carbonates of the Mishrif reservoir Formation (Middle East). The primary mineralogy of the precursor mud partly explains this resemblance: low-Mg calcites were the main carbonate precipitates in the Cretaceous seawater and in Late Miocene freshwater lakes of the Madrid Basin. Based on hardness and petrophysical properties, two main facies were identified in the lacustrine limestones: a tight facies and a microporous facies. The tight facies evidences strong compaction, whereas the microporous facies does not. The petrotexture, the sedimentological content, and the mineralogical and chemical compositions are identical in both facies. The only difference lies in the presence of calcite overgrowths: they are pervasive in microporous limestones, but almost absent in tight carbonates. Early diagenetic transformations of the sediment inside a fluctuating meteoric phreatic lens are the best explanation for calcite overgrowths precipitation. Inside the lens, the dissolution of the smallest crystals in favor of overgrowths on the largest ones rigidifies the sediment and prevents compaction, while partly preserving the primary microporous network. Two factors appear essential in the genesis of microporous micrites: a precursor mud mostly composed of low-Mg calcite crystals and an early diagenesis rigidifying the microcrystalline framework prior to burial.  相似文献   

16.
地下深部油藏通常为高温、高压以及高盐的极端环境,含有非常丰富的本源嗜热厌氧微生物,按代谢类群可分为发酵细菌、硫酸盐还原菌、产甲烷古菌和铁还原菌。从油田环境已经分离出90株铁还原微生物,如热袍菌目、热厌氧杆菌目、脱铁杆菌目、δ-变形菌纲脱硫单胞菌目、γ-变形菌纲希瓦氏菌属和广古菌门栖热球菌属等,这些菌株生长温度范围为4-85°C,生长盐度范围为0.1%-10.0%NaCl,还未见到文献报道油藏铁还原菌的耐压性研究。在油藏环境中存在微生物、矿物和流体(油/水)三者之间的相互作用,油藏中的粘土矿物能够作为微生物生命活动的载体,也能为微生物代谢作用提供电子受体。本文综述了油藏铁还原菌分离和表征的研究进展,简述了油藏铁还原菌的环境适用性,并展望了铁还原菌在提高原油采收率方面的应用前景。  相似文献   

17.
Although cell-cell interactions are known to significantly affect the kinetics of intracellular ice formation (IIF) during tissue freezing, this effect is not well understood. Progress in elucidating the mechanism and role of intercellular ice propagation in tissue freezing has been hampered in part by limitations in experimental design and data analysis. Thus, using rapid-cooling cryomicroscopy, IIF was measured in adherent cells cultured in micropatterned linear constructs (to control cell-cell interactions and minimize confounding factors). By fitting a Markov chain model to IIF data from micropatterned HepG2 cell pairs, the nondimensional rate of intercellular ice propagation was found to be alpha = 10.4 +/- 0.1. Using this measurement, a new generator matrix was derived to predict the kinetics of IIF in linear four-cell constructs; cryomicroscopic measurements of IIF state probabilities in micropatterned four-cell arrays conformed with theoretical predictions (p < 0.05), validating the modeling assumptions. Thus, the theoretical model was extended to allow prediction of IIF in larger tissues, using Monte Carlo techniques. Simulations were performed to investigate the effects of tissue size and ice propagation rate, for one-dimensional tissue constructs containing up to 100 cells and nondimensional propagation rates in the range 0.1 < or = alpha < or = 1000.  相似文献   

18.
Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates'' genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the ‘burial and isolation'' hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development.  相似文献   

19.
Bacteria and viruses in the water column of tropical freshwater reservoirs   总被引:3,自引:0,他引:3  
In tropical freshwater reservoirs of Sri Lanka, which are linked in an aquatic network, bacterial abundance and production as well as virus abundance, frequency of viral infection and virus production were investigated together with a set of nutrient species (Kjeldahl-N, NO3-N, total P, soluble P, PO4-P). At two characteristic seasons (wet season, dry season), samples were taken from two types of reservoirs (new upland impoundment and ancient, shallow lowland reservoir), each during 4 days at various depths of the entire water columns. Kjeldahl-N and total P were greatly elevated in the wind-mixed water body of the shallow impoundment during the dry season, whereas the deeper reservoir type exhibited no obvious seasonality. In SYBR green trade mark -stained samples, bacterial abundance showed no seasonal pattern in either reservoir type. Bacterial secondary production, however, was significantly elevated in the entire water column of the shallow impoundment under wind-mixed conditions in the dry season. Highest abundance of virus particles and elevated frequency of bacteria containing mature phages were also observed in the shallow reservoir during the dry season indicating favourable conditions for virus propagation. Data from this aquatic network show that most virus parameters, such as abundance or frequency of visibly infected cells, were positively linked to bacterial abundance and production, but also to organic nitrogen or some phosphorus species. We calculated that between 13.2% and 46.1% of the bacterial standing stocks would be subjected to virus-mediated mortality. Estimates of bacteriophage production revealed that from 10 x 10(9) up to 98 x 10(9) phages were produced per litre and day. Bacteria and viruses in the studied tropical freshwater system appear to be linked to various environmental conditions and may affect processes at the ecosystem scale.  相似文献   

20.
Echo state networks (ESNs) with multi-clustered reservoir topology perform better in reservoir computing and robustness than those with random reservoir topology. However, these ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation. This study focuses on the reservoir generation problem when ESN is used in environments with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir generation algorithm is proposed. The priori data in the proposed algorithm are used to evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reservoirs are produced using the clustering method; only the reservoir with a better evaluation performance takes the place of a previous one. The final reservoir is obtained when its evaluation score reaches the preset requirement. The prediction experiment results obtained using the Mackey-Glass chaotic time series show that the proposed reservoir generation algorithm provides ESNs with extra prediction precision and increases the structure complexity of the network. Further experiments also reveal the appropriate values of the number of clusters and time window size to obtain optimal performance. The information entropy of the reservoir reaches the maximum when ESN gains the greatest precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号