首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An uncharged N-hydroxysuccinimide ester derivative of agarose, Affi-Gel 10, exhibited excellent capacity for immobilization, at pH 7.5, of proteins having isoelectric points of 6.5--11.0. Under identical conditions, acidic proteins with isoelectric points of 3.3--5.9 did not couple well to this activated gel. Immobilization of acidic proteins increased in the presence of 80 mM CaCl2, or at a pH equal to or less than the isoelectric point. Affi-Gel 15, a new N-hydroxysuccinimide ester derivative of agarose containing a tertiary amine in the spacer arm, coupled acidic proteins efficiently at pH 7.5 but basic proteins coupled poorly. The immobilization of basic proteins to Affi-Gel 15 was increased to useful levels by increasing the ionic strength, or the pH, of the reaction medium. The lectin concanavalin A was efficiently immobilized using either activated gel, and the concanavalin A-agarose derivatives bound 3.9--4.1 mg ovalbumin/ml gel. These studies demonstrate that the charge of the protein relative to the charge of the gel is an important factor affecting the level of protein immobilization to active ester gels.  相似文献   

2.
A chemical affinity system exhibiting antibody-like properties is described. The system exploits bioconjugates with appended phenylboronic acid (PBA) moieties and a support-bound phenylboronic acid complexing reagent derived from salicylhydroxamic acid (SHA) for protein immobilization on a chromatographic support. The structure of the PBA.SHA complex was characterized by 11B NMR and mass spectrometry and compared with complexes derived from model compounds. Protein modification reagents were synthesized from 3-aminophenylboronic acid and utilized to prepare bioconjugates from alkaline phosphatase (AP) and horseradish peroxidase (HRP). AP obtained from one source afforded PBA bioconjugates exhibiting significant loss of enzymatic activity, whereas AP obtained from a second source afforded PBA bioconjugates exhibiting only a modest loss of enzymatic activity. Conversely, HRP afforded PBA bioconjugates exhibiting no loss of enzymatic activity. SHA-modified Sepharose was prepared by reaction of methyl 4-[(6-aminohexanoylamino)methyl]salicylate with CNBr-activated Sepharose 4B, followed by treatment with aqueous alkaline hydroxylamine. PBA-AP and PBA-HRP conjugates were efficiently immobilized on SHA-Sepharose at pH 8.3. PBA-AP conjugates were retained after washing with acidic buffers at pH 6.7, 4.2, and 2.5, whereas PBA-HRP conjugates were retained after washing with buffer at pH 6.7, but were eluted to some extent at and below pH 4.2. The results are interpreted in terms of multivalent interactions involving boronic acid complex formation between the enzyme bioconjugates and immobilized complexing reagent.  相似文献   

3.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

4.
Immobilization of proteins and other biological macromolecules on solid supports is a method suitable for purification or screening applications in life science research. Prolinx, Inc. has developed a novel chemical affinity system that can be used for specific immobilization of proteins and other macromolecules via interaction of two small synthetic molecules, phenyldiboronic acid (PDBA) and salicylhydroxamic acid (SHA). This report describes immobilization applications of activated microporous membranes that have been functionalized with SHA derivatives. These SHA-membranes exhibit high capacity and specificity for binding of PDBA-labeled nucleic acids and proteins. Conjugation of active protein with PDBA is performed in solution independent of the immobilization step on SHA membranes. The resulting PDBA–protein conjugate is immobilized directly without purification and retains biological activity. PDBA conjugates may also be released from these SHA-affinity membranes in a controlled manner. Capture and release of PBA-modified oligonucleotides is also demonstrated. SHA-membranes can be used as surfaces for microarrays, and are therefore compatible with high-throughput analyses. These properties make them useful for development of numerous preparative or screening applications.  相似文献   

5.
Cyclomaltodextrin glucanotransferase [1,4-alpha-D-glucan-4-alpha-D-(1,4-alpha-D-glucano)-transferase (cyclizing), E.C.-2.4.1.19] of an alkalophilic Bacillus sp. No. 38-2 (ATCC 21783), which contains three types of enzymes (acid, neutral, and alkaline enzymes), was immobilized on synthetic adsorption resin. No distinguishing changes in pH or thermal stabilities of enzyme were observed due to the immobilization. Since acid-enzyme activity had disappeared, the optimum pH of immobilized enzyme was 9.0. Optimum temperature for the enzyme activity changed from 50 to 55 degrees C. The enzyme converted starch to cyclodextrins without significant loss of activity under the conditions of continuous reaction for about two weeks by using the column system (60 degrees C at pH 8.0). About 63% of soluble starch solution [4% (w/v)] was changed to cyclodextrins, as tested so far.  相似文献   

6.
Jack bean urease (urea aminohydrolase, EC 3.5.1.5) was immobilized onto modified non-porous poly(ethylene glycol dimethacrylate/2-hydroxy ethylene methacrylate), (poly(EGDMA/HEMA)), microbeads prepared by suspension copolymerization for the potential use in hemoperfusion columns, not previously reported. The conditions of immobilization; enzyme concentration, medium pH, substrate and ethylene diamine tetra acetic acid (EDTA) presence in the immobilization medium in different concentrations, enzyme loading ratio, processing time and immobilization temperature were investigated for highest apparent activity. Immobilized enzyme retained 73% of its original activity for 75 days of repeated use with a deactivation constant kd = 3.72 x 10(-3) day(-1). A canned non-linear regression program was used to estimate the intrinsic kinetic parameters of immobilized enzyme with a low value of observable Thiele modulus (phi < 0.3) and these parameters were compared with those of free urease. The best-fit kinetic parameters of a Michaelis-Menten model were estimated as Vm = 3.318 x 10(-4) micromol/s mg bound enzyme protein, Km = 15.94 mM for immobilized, and Vm = 1.074 micromol NH3/s mg enzyme protein, Km = 14.49 mM for free urease. The drastic decrease in Vm value was attributed to steric effects, conformational changes in enzyme structure or denaturation of the enzyme during immobilization. Nevertheless, the change in Km value was insignificant for the unchanged affinity of the substrate with immobilization. For higher immobilized urease activity, smaller particle size and concentrated urease with higher specific activity could be used in the immobilization process.  相似文献   

7.
为提高烟酰胺腺嘌呤二核苷酸(NAD)激酶的稳定性,采用复合膜对NAD激酶进行固定化研究。选用聚乙烯醇(PVA)、聚乳酸(PLA)、海藻酸钠(SA)和明胶(GEL)膜材料固定化NAD激酶。通过单因素实验确定最佳固定化条件为:PVA∶GEL为4∶1,加酶量为0.6 mL,固定化时间为6h,固定化温度为35℃,此时酶活力回收率达到最高值84%。固定化酶酶学性质分析结果表明,与游离酶进行比较,固定化后NAD激酶的最适温度由50℃提高至55℃,最适pH由8.0降至7.0,NAD激酶的热稳定性和pH稳定性均得到显著提高,但固定化酶的亲和力降低。固定化NAD激酶重复利用6次后,酶活性依然可维持初始酶活性的75%以上,表明聚乙烯醇-明胶复合膜固定化酶具有良好的操作稳定性。  相似文献   

8.
Immobilized angiotensin-converting enzyme (ACE) was utilized as an affinity ligand to isolate a naturally occurring ACE binding protein from normal human serum. The enzyme was isolated from solubilized bovine lung membrane preparations by lisinopril affinity chromatography. It had an estimated molecular weight of 180 000 and was recognized by the anti-ACE antibody for the rabbit testicular ACE in immunoblots. ACE was immobilized onto epoxy Sepharose as well as Affi-Gel 15. Immobilized ACE on Affi-Gel 15 had higher catalytic activity (0.176 U/mL) compared with the enzyme immobilized on epoxy Sepharose (0.00005 U/mL). Immobilized ACE served as the affinity ligand for the identification of the ACE binding protein in human serum with an estimated molecular weight of 14 000 as observed by SDS polyacrylamide gel electrophoresis. The identification and further characterization of ACE binding proteins in serum and tissues may facilitate the greater understanding of the endogenous regulation of this key enzyme, which is involved in blood pressure homeostasis.  相似文献   

9.
Rat liver spermidine/spermine N1-acetyltransferase was found to be strongly inhibited by the dyes Cibacron F3GA, Coomassie Brilliant Blue and Congo Red. Inhibition was competitive with respect to acetyl-CoA and Ki values of 0.7 microM and 52 microM were determined for Cibacron F3GA and Coomassie Brilliant Blue respectively. The enzyme was strongly retained by columns of Affi-Gel Blue, which contains Cibacron F3GA linked to agarose. It was not eluted from this adsorbent in the presence of 10 mM-spermidine/0.5 M-NaCl/50 mM-Tris/HCl, pH 7.5, but was released by 1 mM-CoA in 10 mM-spermidine/50 mM-Tris/HCl, pH 7.5. These results are consistent with the presence in the enzyme of a dinucleotide fold that binds acetyl CoA and has a high affinity for Cibacron F3GA. The spermidine/spermine N1-acetyltransferase was irreversibly inactivated by exposure to butane-2,3-dione in sodium borate, pH 7.8, or by exposure to phenylglyoxal or camphorquinone-10-sulphonic acid. All of these reagents are known to interact with arginine residues in proteins under the conditions in which they inactivated the acetyltransferase. Inactivation was prevented by the presence of acetyl-CoA or CoA, but to a lesser extent by 3'-dephospho-CoA and not at all by NAD or adenosine. This protection suggests that an arginine residue at the active site is involved in the binding of the acetyl-CoA substrate. Treatment of the assay mixture but not the spermidine N1-acetyltransferase with alkaline phosphatase prevented the reaction taking place. This suggests that the apparent loss of enzyme activity in response to alkaline phosphatase reported by Matsui, Otani, Kamei & Morisawa [(1982) FEBS Lett. 150, 211-213] is due to dephosphorylation of the acetyl-CoA substrate and that the 3'-phosphate group is essential for activity.  相似文献   

10.
Transglutaminase-mediated site-specific and covalent immobilization of an enzyme to chemically modified agarose was explored. Using Escherichia coli alkaline phosphatase (AP) as a model, two designed specific peptide tags containing a reactive lysine (Lys) residue with different length Gly-Ser linkers for microbial transglutaminase (MTG) were genetically attached to N- or C-termini. For solid support, agarose gel beads were chemically modified with beta-casein to display reactive glutamine (Gln) residues on the support surface. Recombinant APs were enzymatically and covalently immobilized to casein-grafted agarose beads. Immobilization by MTG markedly depended on either the position or the length of the peptide tags incorporated to AP, suggesting steric constraint upon enzymatic immobilization. Enzymatically immobilized AP showed comparable catalytic turnover (k(cat)) to the soluble counterpart and comparable operational stability with chemically immobilized AP. These results indicate that attachment of a suitable specific peptide tag to the right position of a target protein is crucial for MTG-mediated formulation of highly active immobilized proteins.  相似文献   

11.
Acid tolerant lactase (I), α-chymotrypsin (II), and acid phosphatase (III) were immobilized on chitin with glutaraldehyde. Pretreatments of the chit in with acid, alkali, ammonia, and pronase were compared with respect to release of titratable amino groups and ability to retain lactase activity. Shrimp chitin appeared to be more sensitive to pretreatment conditions and so effort was concentrated on crab. An acid-alkali pretreatment was selected as most practical and economical, and the properties of enzymes fixed on crab chitin were studied intensively. The pH optima of the fixed enzymes were shifted about one pH unit; the shift for I was toward more acid pH, for II was toward alkaline pH, and for III was toward acid pH. The retained activity of immobilized I was approximately 60% that of the native enzyme. A column in continuous operation with I on chitin-glutaraldehyde gave an apparent activity half-life of 27 days.  相似文献   

12.
The peroxisomal core from the liver of rats was purified 450-fold as a marker of urate oxidase [EC 1.7.3.3.] activity. This preparation has a high specific activity of urate oxidase but not of other peroxisomal enzymes: D-amino acid oxidase [EC 1.4.3.3.], L-alpha-hydroxy acid oxidase [EC 1.1.3.15], or catalase [EC 1.11.1.6]. No activity of marker enzymes for other subcellular particles; cytochrome c oxidase [EC1.9.3.1] (mitochondria), acid phosphatase [EC 3.1.3.2] (lysosomes), or glucose-6-phosphatase [EC 3.1.3.9] (microsomes), was detected in this preparation. The core obtained showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the position of the band was found to correspond to a molecular weight 35,000. When the peroxisomal core was subjected to treatment at various pH's with 0.1 M carbonate buffer, urate oxidase was almost completely solubulized at pH 11.0, although approximately 35% of the core protein still remained in the pellet After solubilization of the core at pH 11.0, the specific activity of urate oxidase in the supernatant increased about 1.6 times; the density of the insoluble protein remaining in the pellet was identical with the that of the original core on sucrose density gradient centrifugation.  相似文献   

13.
Alkaline phosphatase in a wide range of tissues has been shown to be anchored in the membrane by a specific interaction with the polar head group of phosphatidylinositol. It has previously been suggested that the production of low Mr alkaline phosphatase during the commonly used butanol extraction procedure may result from the activation of an endogenous phosphoinositide-specific phospholipase C which removes the 1,2-diacylglycerol responsible for membrane anchoring. This conversion process was investigated in greater detail with human placenta used as the source of alkaline phosphatase. Mr and hydrophobicity of the alkaline phosphatase were determined by gel filtration on TSK-250 and partitioning in Triton X-114, respectively. Alkaline phosphatase extracted from human placental particulate fraction with butanol at pH 5.4 or released by incubation with Staphylococcus aureus phosphatidylinositol-specific phospholipase C produced a form of alkaline phosphatase of Mr approx. 170,000 and relatively low hydrophobicity. By contrast, the butanol extract prepared at pH 8.3 was an aggregated form of Mr approx. 600,000 and was relatively hydrophobic. The effect of a variety of inhibitors and activators on the amount of low Mr alkaline phosphatase produced during butanol extraction revealed that it was a Ca2+- and thiol-dependent process. Proteinase inhibitors had no effect. [3H]Phosphatidylinositol hydrolysis by the particulate fraction, unlike low Mr alkaline phosphatase production, was relatively sensitive to heat inactivation, indicating that the phosphoinositide-specific phospholipases C from cytosol and lysosomes were unlikely to be responsible for conversion. A butanol-stimulated activity which removed the [3H]myristic acid from the variant surface glycoprotein ( [3H]mfVSG) of Trypanosoma brucei was detectable in the human placental particulate fraction. Since this activity was acid active, Ca2+- and thiol-dependent and relatively heat stable, it may be the same as that responsible for production of low Mr alkaline phosphatase. The only 3H-labelled product identified was phosphatidic acid, suggesting that the [3H]mfVSG-cleaving activity is a phospholipase D. These data strongly support the proposal that production of low Mr alkaline phosphatase during butanol extraction is an autolytic process occurring as the result of an endogenous phospholipase. However, they also suggest that the lysosomal and cytosolic phosphoinositide-specific phospholipases C that have previously been described in many mammalian tissues are not responsible for this process.  相似文献   

14.
The production of D-aminoacylase by Alcaligenes faecalis DA1 was induced 5- to 50-fold by N-acetyl-D-amino acids. This strain produced about 443 units of D-aminoacylase and 52 units of L-aminoacylase per gram of cells (wet weight) when cultivated in a medium containing 1% N-acetyl-DL-leucine as the carbon source. The D-aminoacylase was partially purified by Fractogel DEAE 650 column chromatography and then immobilized on another Fractogel DEAE 650 column. The catalytic activity of the immobilized D-aminoacylase was 2,650 units per milliliter of gel. The Km values for the free and the immobilized enzymes were found to be 1.00 and 0.22 mM, respectively, using N-acetyl-D-methionine as a substrate. The optimal reaction pH and temperature for both soluble and immobilized enzyme were around 8.0 and 45 degrees C, respectively. The free enzyme was stable in the pH range from 5.0 to 11.0, whereas the immobilized enzyme tended to detach from the gel at pH values higher than 9.0. Both forms of enzyme were stable up to 40 degrees C. When used for the optical resolution of N-acetyl-DL-methionine, the immobilized enzyme maintained 90% initial activity after 17 days of continuous operation at 45 degrees C. The process of purification and immobilization of D-aminoacylase described in this report is very effective and easy to scale up.  相似文献   

15.
The total synthesis of an affinity gel suitable for the purification of retinoic acid receptors (hRARs) is reported. A chalcone derived from a potent retinobenzoic acid (Ch55) was chosen as the ligand and fixed to an immobilized matrix by coupling with the N-hydroxysuccinimide ester of agarose (Affi-Gel 10, Bio-Rad Laboratories). Efficiencies of purification of the different human RARs were tested, using recombinant receptors produced with the baculovirus expression system.  相似文献   

16.
Cen L  Neoh KG  Li Y  Kang ET 《Biomacromolecules》2004,5(6):2238-2246
Electrically conductive polypyrrole (PPY) was surface functionalized with hyaluronic acid (HA) and sulfated hyaluronic acid (SHA) to improve its surface biocompatibility. The immobilization of HA on the PPY film was facilitated by the use of a cross-linker having the appropriate functional groups. The biological activity of the HA functionalized PPY film was assessed by means of an in vitro PC12 cell culture. The cell attachment on different substrates was studied and determined by bicinchoninic acid protein analysis. Cell attachment on the HA functionalized PPY film surface was significantly enhanced in the presence of nerve growth factor. The SHA functionalized PPY film was obtained by the sulfonation of the immobilized HA using pyridinesulfonate. The retention of the biological activity of the immobilized HA after sulfonation was evaluated by the in vitro assessment of the plasma recalcification time (PRT) and platelet adhesion on the substrate. The PRT observed from the SHA functionalized PPY film was significantly prolonged compared with the HA functionalized PPY. Some reduction of platelet adhesion was observed for the SHA functionalized PPY film, compared with that of the HA functionalized PPY film.  相似文献   

17.
A number of sorbents were synthesized on the basis of pectin and then used for immobilization of proteolytic complexes--pancreatin and protosubtilin. The best properties were shown by the enzyme preparations based on pectin, formaldehyde and melamin (PFM). Thus immobilization of pancreatin on PFM through Fe(III) ions gave a preparation with the activity of 79 000 mumole/g X h with respect to methyl ester of L-tryptophane (the activity yield is 91%). The pH optimum for all immobilized preparations was shifted towards the alkaline region. The thermostable fraction of the immobilized preparations retains the activity at 60 degrees for a long time.  相似文献   

18.
M Ikeda  S Watanabe  T Kusaka 《Steroids》1988,52(3):187-203
Covalent immobilization of the soluble estrogen receptor from a rabbit uterus to N-hydroxysuccinimide ester derivative of agarose is shown. At first, the condition for the immobilization reaction was examined. The non-immobilized receptor was extracted with 0.4 M NaCl-containing medium. Sixty seven to 80% of the input receptor were immobilized within 30 min at 0 degrees C in 0.1 M HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid, pH 7.4). The immobilized [3H]estradiol(3,17 beta-dihydroxy-1,3,5(10)-estratriene)-receptor complex was stable for at least 24 h. The optimum pH for immobilization was 7.4. Ca2+ or Na+ ions in the reaction media decreased the yields in immobilization of the receptor to the reagent with an electrostatically positive spacer arm. Next, influences of immobilization on the receptor were examined. The dissociation rate of [3H]estradiol from the immobilized receptor was a little slower than that from the native receptor. The estrogen-free immobilized receptor was saturated by incubating with 10 nM [3H]estradiol for 10 h at 0 degrees C in 0.1 M HEPES (pH 7.4). From Scatchard plot analysis, it was found that the hormone binding affinity in the immobilized receptor decreased to approximately one-fourth of that in the native receptor.  相似文献   

19.
Whole cells of Escherichia coli having high aspartase (L-asparate ammonialyase, EC 4.3.1.1) activity were immobilized by entrapping into a kappa-carrageenan gel. The obtained immobilized cells were treated with glutaraldehyde or with glutaraldehyde and hexamethylenediamine. The enzymic properties of three immobilized cell preparations were investigated, and compared with those of the soluble aspartate. The optimum pH of the aspartase reaction was 9.0 for the three immobilized cell preparations and 9.5 for the soluble enzyme. The optimum temperature for three immobilized cell preparations was 5--10 degrees C higher than that for the soluble enzyme. The apparent Km values of immobilized cell preparations were about five times higher than that of the soluble enzyme. The heat stability of intact cells was increased by immobilization. The operational stability of the immobilized cell columns was higher at pH 8.5 than at optimum pH of the aspartase reaction. From the column effluents, L-aspartic acid was obtained in a good yield.  相似文献   

20.
Glutaryl-7-aminocephalosporanic acid acylase (GA), an industrially relevant enzyme, has been immobilized onto very different supports, including glyoxyl agarose, heterofunctional epoxy Sepabeads, glutaraldehyde and cyanogen bromide (CNBr) activated supports. Immobilization onto amino-epoxy Sepabeads rendered the most thermo stable preparation of GA, with a half-life time eight times higher than the soluble enzyme, keeping 80% of the enzyme activity. Several parameters that affect the enzyme-support interaction (pH and incubation time) were studied. It was found that after immobilization onto amino-epoxy Sepabeads, incubation at alkaline pH and low temperature exerted dramatic stabilizing effects, increasing the half-life time of the derivative 130 times with respect to the soluble enzyme, while keeping unaltered its intrinsic activity. The loading capacity of the amino-epoxy Sepabeads proved to be very good with a maximum load of 62 mg of protein per g of support with 85 IU/g at 25 degrees C and 200 IU/g at 37 degrees C which makes it a biocatalyst of possible industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号