首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Five main drivers of population declines have been identified: climate change, habitat degradation, invasive alien species (IAS), overexploitation and pollution. Each of these drivers interacts with the others, and also with the intrinsic traits of individual species, to determine species’ distribution and range dynamics. We explored the relative importance of life-history and resource-use traits, climate, habitat, and the IAS Harmonia axyridis in driving local extinction and colonisation dynamics across 25 ladybird species (Coleoptera: Coccinellidae).Species were classified as continually present, continually absent, extinct, or colonising in each of 4,642 1-km2 grid squares. The spatial distribution of local extinction and colonisation events (in the grid squares) across all species’ ranges were related to ecological traits, overlap with H. axyridis, climate, and habitat factors within generalised linear models (GLMs). GLMs were also used to relate species’ traits, range characteristics, and niche overlap with H. axyridis to extinction and colonisation rates summarised at the species level. Bayesian model averaging was used to account for model uncertainty, and produce reduced sets of models which were well-supported by data. Species with a high degree of niche overlap with H. axyridis suffered higher extinction rates in both analyses, while at the spatial scale extinctions were more likely and colonisations less likely in areas with a high proportion of urban land cover. In the spatial analysis, polymorphic species with large range sizes were more likely to colonise and less likely to go extinct, and sunny grid squares were more likely to be colonised. Large, multivoltine species and rainy grid squares were less likely to colonise or be colonised. In conclusion for ladybirds, extinction and colonisation dynamics are influenced by several factors. The only factor that both increased the local extinction likelihood and reduced colonisation likelihood was urban land cover, while ecological overlap with H. axyridis greatly increased extinction rates. Continued spread of H. axyridis is likely to adversely affect native species and urban areas may be particularly vulnerable.  相似文献   

2.
1. We calculate the yearly numbers of bird species immigrating to – and becoming extinct on – 13 small islands of the British Isles, using a long and relatively complete data record.
2. We estimate the size of the colonist pool for each island using four methods.
3. We assume that immigrations and extinctions are distributed binomially, and use a maximum likelihood method to fit concave immigration and extinction functions to the data, utilizing all four species pool estimates.
4. Extinction rates increase significantly and consistently with increasing numbers of breeding species on each island. For nine of the 13 islands the extinction functions are significantly concave.
5. Immigration rates decrease consistently with increasing numbers of breeding species on each island. Seven islands have significantly concave immigration functions.
6. Immigration rates and extinction rates decline consistently, but not significantly, with island distance and island size, respectively. The number of breeding species does not always reflect the number of species likely to have reached an island. Moreover, some species may choose not to breed when their chance of extinction is high. These factors, plus the modest range of island areas and distances in our database, reduce our chances of finding the theoretically predicted effects of area and distance on extinction and immigration rates.  相似文献   

3.
There is a widespread belief that we are experiencing a mass extinction event similar in severity to previous mass extinction events in the last 600 million years where up to 95% of species disappeared. This paper reviews evidence for current extinctions and different methods of assessing extinction rates including species–area relationships and loss of tropical forests, changing threat status of species, co-extinction rates and modelling the impact of climate change. For 30 years some have suggested that extinctions through tropical forest loss are occurring at a rate of up to 100 species a day and yet less than 1,200 extinctions have been recorded in the last 400 years. Reasons for low number of identified global extinctions are suggested here and include success in protecting many endangered species, poor monitoring of most of the rest of species and their level of threat, extinction debt where forests have been lost but species still survive, that regrowth forests may be important in retaining ‘old growth’ species, fewer co-extinctions of species than expected, and large differences in the vulnerability of different taxa to extinction threats. More recently, others have suggested similar rates of extinction to earlier estimates but with the key cause of extinction being climate change, and in particular rising temperatures, rather than deforestation alone. Here I suggest that climate change, rather than deforestation is likely to bring about such high levels of extinction since the impacts of climate change are local to global and that climate change is acting synergistically with a range of other threats to biodiversity including deforestation.  相似文献   

4.
Identifying the factors that determine local extinction of populations is crucial to ensure species conservation. Forest-dwelling primates are especially vulnerable to habitat fragmentation, although few studies have provided systematic evidence of local extinctions. Over an 11-year period, approximately 100 remnant populations of the endangered Coimbra Filho’s titi monkey (Callicebus coimbrai) have been found within the geographic range of the species in Bahia and Sergipe, Northeast Brazil. During the present study, extinction of 13 of these populations was recorded through intensive surveys. These extinctions were detected from evidence of intensive logging and clear-cutting, interviews with local residents and systematic searches of the sites where occurrence of the species had been confirmed in previous surveys. These local extinctions represent approximately 10 % of the known populations of C. coimbrai and up to 28.3 % of the area occupied by the species. Comparison of the vegetation structure in fragments where extinction was recorded and where the species still occurs indicated that sparser understorey may be a correlate of extinction, combined with the fact that extinctions occurred within fragments characterised by relatively high levels of anthropogenic disturbance. These findings reinforce the Endangered status of the species and the urgent need for intensification of conservation measures within the most impacted areas of the geographic distribution of C. coimbrai.  相似文献   

5.
Mammal extinctions are widespread globally, with South Asian species being most threatened. We examine local extinctions of 25 mammals in India. We use historical records to obtain a set of locations at which each species was known to have been present at some time in the last 200 years. We then use occupancy estimation models to draw inferences about current presence at these same locations based on field observations of local experts. We examine predictions about the influence of key factors such as protected areas, forest cover, elevation, human population density and cultural tolerance on species extinction. For all 25 species, estimated local extinction probabilities (referenced to a 100 year time frame) range between 0.14 and 0.96. Time elapsed since the historical occurrence record was an important determinant of extinction probability for 14 species. Protected areas are positively associated with lower extinction of 18 species, although many species occur outside them. We find evidence that higher proportion of forest cover is associated with lower extinction probabilities for seven species. However, for species that prefer open habitats (which have experienced intensive land-use change), forest cover alone appears insufficient to ensure persistence (the complement of extinction). We find that higher altitude is positively associated with lower extinction for eight species. Human population density is positively associated with extinction of 13 species. We find that ‘culturally tolerated’ species do exhibit higher persistence. Overall, large-bodied, rare and habitat specialist mammals tend to have higher extinction probabilities.  相似文献   

6.
This paper considers, for eight species of woodland bird, the factors that influenced both local extinctions and recolonisations in 145 woods over 3 years. In all species, probability of local extinction was inversely related to population size; most local extinctions occurred in woods containing one to three breeding pairs. However, considerable variation in extinction probabilities occurred between species and between years. In addition, the suitability of habitat within a wood (more extinctions in less suitable woods) was important for wren Troglodytes troglodytes, song thrush Turdus philomelos and blue tit Parus caeruleus; also, the structure of the surrounding landscape was important for blue tit, great tit Parus major, and chaffinch Fringilla coelebs (more extinctions in localities with less woodland). In only two species was the probability of recolonisation related to any of the measured variables. Wrens were more likely to recolonise larger woods, whereas song thrushes were more likely to recolonise woods with a high habitat suitability rating and those which are more isolated from other woodland  相似文献   

7.
Spatial patterns of range contraction in British breeding birds   总被引:1,自引:0,他引:1  
We use ornithological atlas data to assess evidence for the existence of a number of spatial patterns of range contraction in British breeding birds. For 18 of the 25 species which suffered the greatest range contractions between 1968 and 1991, there wais a greater likelihood of local extinction in areas where the species was initially less widespread, so ranges tended to contract towards their cores. However there was evidence for a number of other patterns, with some species having a greater likelihood of local extinction in the centres of their ranges and others suffering random local extinctions throughout their range. The different spatial patterns identified were largely independent of the overall range contraction suffered by each species nationally. We suggest that range contractions in British birds can generally be explained better by a general decline in habitat quality or other factors than by contagious anthropogenic effects, as might be expected in a country with a long history of human environmental modification.  相似文献   

8.
Classic infectious disease theory assumes that transmission depends on either the global density of the parasite (for directly transmitted diseases) or its global frequency (for sexually transmitted diseases). One important implication of this dichotomy is that parasite-driven host extinction is only predicted under frequency-dependent transmission. However, transmission is fundamentally a local process between individuals that is determined by their and/or their vector’s behaviour. We examine the implications of local transmission processes to the likelihood of disease-driven host extinction. Local density-dependent transmission can lead to parasite-driven extinction, but extinction is more likely under local frequency-dependent transmission and much more likely when there is active local searching behaviour. Density-dependent directly transmitted diseases spread locally can therefore lead to deterministic host extinction, but locally frequency-dependent passive vector-borne diseases are more likely to cause extinctions. However, it is active searching behaviour either by a vector or between sexual partners that is most likely to cause the host to go extinct. Our work emphasises that local processes are essential in determining parasite-driven extinctions, and the role of parasites in the extinction of rare species may have been underplayed due to the classic assumption of global density-dependent transmission.  相似文献   

9.
Familiar quantitative reserve-selection techniques are tailored to simple decision problems, where the representation of species is sought at minimum cost. However, conservationists have begun to ask whether representing species in reserve networks is sufficient to avoid local extinctions within selected areas. An attractive, but previously untested idea is to model current species' probabilities of occurrence as an estimate of local persistence in the near future. Using distribution data for passerine birds in Great Britain, we show that (i) species' probabilities of occurrence are negatively related to local probabilities of extinction, at least when a particular 20-year period is considered, and (ii) local extinctions can be reduced if areas are selected to maximize current species' probabilities of occurrence We suggest that more extinctions could be avoided if even a simple treatment of persistence were to be incorporated within reserve selection methods.  相似文献   

10.
1  Distribution data were assembled for non-volant small mammals along elevational gradients on mountain ranges in the western U.S.A. Elevational distributions in the species-rich Uinta Mountains were compared to those on smaller mountain ranges with varying degrees of historical isolation from the Uintas.
2  For mountain ranges supporting the richest faunas, species richness is highest over a broad low- to mid-elevation zone and declines at both lower and higher elevations. Patterns on other mountain ranges are similar but reflect lower overall species richness.
3  A basic relationship between elevational and geographical distribution is apparent in the occurrence patterns of mammals on regional mountains. Faunas on mountains that have had low levels of historical isolation appear to be influenced by immigration rather than extinction. Species restricted to high elevations in the Uintas are poorly represented on historically isolated mountains and form a portion of local faunas shaped by extinction. Species occurring at lower elevations in the Uintas have better representation on isolated mountains and apparently maintain populations through immigration.
4  Several widespread species show substantial variation in maximum elevation records on different mountain ranges. This involves (1) an upward shift in habitat zones on small, isolated mountain ranges, allowing greater access by low-elevation species, and (2) expansion of certain low- and mid-elevation species into habitats normally occupied by absent high-elevation taxa.
5  Results indicate that montane mammal faunas of the intermountain region have been shaped by broad-scale historical processes, unique regional geography and local ecological dynamics. Parallel examples among mammals of the Philippine Islands suggest that such patterns may characterize many insular faunas.  相似文献   

11.
1.  Most species' surveys and biodiversity inventories are limited by time and money. Therefore, it would be extremely useful to develop predictive models of animal distributions based on habitat, and to use these models to estimate species' densities and range sizes in poorly sampled regions.
2.  In this study, two sets of data were collected. The first set consisted of over 2000 butterfly transect counts, which were used to determine the relative density of each species in 16 major habitat types in a 35-km2 area of fragmented landscape in north-west Wales. For the second set of data, the area was divided into 140 cells using a 500-m grid, and the extent of each habitat and the presence or absence of each butterfly and moth species was determined for each cell.
3.  Logistic regression was used to model the relationship between species' distribution and predicted density, based on habitat extent, in each grid square. The resultant models were used to predict butterfly distributions and occupancy at a range of spatial scales.
4.  Using a jack-knife procedure, our models successfully reclassified the presence or absence of species in a high percentage of grid squares (mean 83% agreement). There were highly significant relationships between the modelled probability of species occurring at regional and local scales and the number of grid squares occupied at those scales.
5.  We conclude that basic habitat data can be used to predict insect distributions and relative densities reasonably well within a fragmented landscape. It remains to be seen how accurate these predictions will be over a wider area.  相似文献   

12.
The large vulnerability of top predators to human-induced disturbances on ecosystems is a matter of growing concern. Because top predators often exert strong influence on their prey populations their extinction can have far-reaching consequences for the structure and functioning of ecosystems. It has, for example, been observed that the local loss of a predator can trigger a cascade of secondary extinctions. However, the time lags involved in such secondary extinctions remain unexplored. Here we show that the loss of a top predator leads to a significantly earlier onset of secondary extinctions in model communities than does the loss of a species from other trophic levels. Moreover, in most cases time to secondary extinction increases with increasing species richness. If local secondary extinctions occur early they are less likely to be balanced by immigration of species from local communities nearby. The implications of these results for community persistence and conservation priorities are discussed.  相似文献   

13.
Identifying local extinctions is integral to estimating species richness and geographic range changes and informing extinction risk assessments. However, the species occurrence records underpinning these estimates are frequently compromised by a lack of recorded species absences making it impossible to distinguish between local extinction and lack of survey effort—for a rigorously compiled database of European and Asian Galliformes, approximately 40% of half-degree cells contain records from before but not after 1980. We investigate the distribution of these cells, finding differences between the Palaearctic (forests, low mean human influence index (HII), outside protected areas (PAs)) and Indo-Malaya (grassland, high mean HII, outside PAs). Such cells also occur more in less peaceful countries. We show that different interpretations of these cells can lead to large over/under-estimations of species richness and extent of occurrences, potentially misleading prioritization and extinction risk assessment schemes. To avoid mistakes, local extinctions inferred from sightings records need to account for the history of survey effort in a locality.  相似文献   

14.
Aim Local‐scale diversity patterns are not necessarily regulated by contemporary processes, but may be the result of historical events such as habitat changes and selective extinctions that occurred in the past. We test this hypothesis by examining species‐richness patterns of the land snail fauna on an oceanic island where forest was once destroyed but subsequently recovered. Location Hahajima Island of the Ogasawara Islands in the western Pacific. Methods Species richness of land snails was examined in 217 0.25 × 0.25 km squares during 1990–91 and 2005–07. Associations of species richness with elevation, current habitat quality (proportion of habitat composed of indigenous trees and uncultivated areas), number of alien snail species, and proportion of forest loss before 1945 in each area were examined using a randomization test and simultaneous autoregressive (SAR) models. Extinctions in each area and on the entire island were detected by comparing 2005–07 records with 1990–91 records and previously published records from surveys in 1987–91 and 1901–07. The association of species extinction with snail ecotype and the above environmental factors was examined using a spatial generalized linear mixed model (GLMM). Results The level of habitat loss before 1945 explained the greatest proportion of variation in the geographical patterns of species richness. Current species richness was positively correlated with elevation in the arboreal species, whereas it was negatively correlated with elevation in the ground‐dwelling species. However, no or a positive correlation was found between elevation and richness of the ground‐dwelling species in 1987–91. The change of the association with elevation in the ground‐dwelling species was caused by greater recent extinction at higher elevation, possibly as a result of predation by malacophagous flatworms. In contrast, very minor extinction levels have occurred in arboreal species since 1987–91, and their original patterns have remained unaltered, mainly because flatworms do not climb trees. Main conclusions The species‐richness patterns of the land snails on Hahajima Island are mosaics shaped by extinction resulting from habitat loss more than 60 years ago, recent selective extinction, and original faunal patterns. The effects of habitat destruction have remained long after habitat recovery. Different factors have operated during different periods and at different time‐scales. These findings suggest that historical processes should be taken into account when considering local‐scale diversity patterns.  相似文献   

15.
Aim  To distinguish the effects of physical geography and socioeconomic conditions on the extinction of butterflies in European states, and to compare patterns influencing extinctions with patterns influencing species richness.
Location  Europe.
Method  Per-state species richness and extinctions were taken from the Red Data Book of European Butterflies , and their relationships with physical geography and socioeconomic predictors were analysed using regression analysis. Two hypothesis were explored: (1) extinctions are related primarily to identical physical geography factors that influence species richness; and (2) extinctions are influenced primarily by human pressure on natural biotopes and follow correlates of modern land use.
Results  Extinctions and richness are not correlated. Richness increased towards low latitudes and with biotope and topographic heterogeneity, and decreased in states affected by Quaternary glaciation and on islands. The only socioeconomic correlate was human density, exhibiting a weak negative effect. Extinctions were negatively correlated with area and with biotope and topographic heterogeneity. They peaked in regions with mild climate in central latitudes. The strongest socioeconomic correlate was high density of railways, interpreted as a proxy of early industrialization. Further correlates were human density and urban employment.
Main conclusion  Topographic and biotope heterogeneity predicts both high species richness and low extinction rates. Losses of butterflies result from a complex interplay of geography and relatively recent economic history, as low topographic heterogeneity and flat relief favoured the early advent of industrialization and intensive land use.  相似文献   

16.
Aim  Our aim was to test whether extinction risk of frog species could be predicted from their body size, fecundity or geographical range size. Because small geographical range size is a correlate of extinction risk in many taxa, we also tested hypotheses about correlates of range size in frogs.
Location  Global.
Methods  Using a large comparative data set ( n  = 527 species) compiled from the literature, we performed bivariate and multiple regressions through the origin of independent contrasts to test proposed macroecological patterns and correlates of extinction risk in frogs. We also created minimum adequate models to predict snout–vent length, clutch size, geographical range size and IUCN Red List status in frogs. Parallel non-phylogenetic analyses were also conducted. We verified the results of the phylogenetic analyses using gridded data accounting for spatial autocorrelation.
Results  The most threatened frog species tend to have small geographical ranges, although the relationship between range and extinction risk is not linear. In addition, tropical frogs with small clutches have the smallest ranges. Clutch size was strongly positively correlated with geographical range size ( r 2 = 0.22) and body size ( r 2 = 0.28).
Main conclusions  Our results suggest that body size and fecundity only affect extinction risk indirectly through their effect on geographical range size. Thus, although large frogs with small clutches tend to be endangered, there is no comparative evidence that this relationship is direct. If correct, this inference has consequences for conservation strategy: it would be inefficient to allocate conservation resources on the basis of low fecundity or large body size; instead it would be better to protect areas that contain many frog species with small geographical ranges.  相似文献   

17.
Atmospheric nitrogen (N) deposition across Europe increased substantially from the 1950s to the 1990s. Targeted surveys suggest a negative correlation between N deposition and species richness within quadrats in sensitive habitats. However, it remains unclear whether plant species losses at national recording scales are correlated with nitrogen deposition. We relate plant species losses before 1987 in Great Britain to reduced and oxidized N deposition, land use change and climate change. The mean Ellenberg fertility (N) indices of plant species lost in each 100 km2 cell before 1987 was compared with those of species that were recorded between 1987 and 1999. In 45% of squares, indices of species lost were significantly lower than those for species present after 1986. For 17%, primarily upland, squares, the opposite effect was found. A generalized least squares regression model, with difference in the mean Ellenberg N index between samples as the dependent variable, showed that higher deposition of reduced N was significantly associated with selective loss of species with a lower index. Arable land use and change in arable land use also demonstrated this positive relationship. Rough grazing, change in rough grazing, change in pasture and change in annual precipitation showed negative effects. Difference in Ellenberg R index was highly correlated with difference in Ellenberg N and was negatively correlated with oxidized N deposition, suggesting that the lack of a significant effect of oxidized N deposition on Ellenberg N was because it had effects through both acidification and eutrophication, while the effect of reduced N deposition was primarily through eutrophication. Our results suggest that N deposition, along with land use and precipitation changes, has been a significant driver of local plant extinctions. With N deposition increasing in many parts of the world, local extinctions of plant species may be experienced in other regions.  相似文献   

18.
It is well documented that habitat loss is a major cause of biodiversity decline. However, the roles of the different aspects of habitat loss in local extinctions are less understood. Anthropogenic destruction of an area of habitat causes immediate local extinction but subsequently three additional gradual drivers influence the likelihood of delayed extinction: decreased habitat patch size, lower connectivity and habitat deterioration. We investigated the role of these drivers in local extinctions of 82 declining species in a UK biodiversity hotspot. We combined a unique set of ≈ 7000 vegetation surveys and habitat maps from the 1930s with contemporary species’ occurrences. We extrapolated from these surveys to the whole 2500‐km2 study area using habitat suitability surfaces. The strengths of drivers in explaining local extinctions over this 70 yr period were determined by contrasting connectivity, patch size and habitat quality loss for locations at which a species went extinct and those with persisting occurrences. Species’ occurrences declined on average by 60%, with half of local extinctions attributable to immediate habitat loss and half to the gradual processes causing delayed extinctions. On average, locations where a species persisted had a 73% higher contemporary connectivity than those suffering extinctions, but showed no differences in historical connectivity. Furthermore, locations with extinctions experienced a 37% greater decline in suitability associated with changes in habitat type. The strength of the drivers and the proportion of extinctions depended on the species’ habitat specialism, but were affected only minimally by life‐history characteristics. In conclusion, we identified a hierarchy of drivers influencing local extinction: with connectivity loss being the strongest, suitability change being moderately important, but changes in habitat patch size having only weak effects. We suggest conservation efforts could be most effective by strengthening connectivity along with reducing habitat deterioration, which would benefit a wide range of species.  相似文献   

19.
The island biogeography of exotic bird species   总被引:1,自引:0,他引:1  
Aim   A recent upsurge of interest in the island biogeography of exotic species has followed from the argument that they may provide valuable information on the natural processes structuring island biotas. Here, we use data on the occurrence of exotic bird species across oceanic islands worldwide to demonstrate an alternative and previously untested hypothesis that these distributional patterns are a simple consequence of where humans have released such species, and hence of the number of species released.
Location   Islands around the world.
Methods   Statistical analysis of published information on the numbers of exotic bird species introduced to, and established on, islands around the world.
Results   Established exotic birds showed very similar species–area relationships to native species, but different species–isolation relationships. However, in both cases the relationship for established exotics simply mimicked that for the number of exotic bird species introduced. Exotic bird introductions scaled positively with human population size and island isolation, and islands that had seen more native species extinctions had had more exotic species released.
Main conclusion   The island biogeography of exotic birds is primarily a consequence of human, rather than natural, processes.  相似文献   

20.
  1. Habitat modification and fragmentation are key factors responsible for fish population decline worldwide. Previous assessments documented a total of 72 species extinctions for the sole class of Actinopterygii. However, global extinctions are difficult to monitor or study based on fossil records. By contrast, local extinctions occurring at the population level are easier to study. Given this context, an important question relates to whether extinction dynamics studied at the local scale can provide useful information to understand extinctions occurring at larger scales. This would be the case if local extinctions were not balanced by recolonisation as in a classic metapopulation. Our aim is thus to explain the observed regional (per basin) persistence of 252 fish populations by testing contribution of local extinction rates and more generally metapopulation dynamics components.
  2. To address this aim, we used the annual extinction probability of 252 regional populations of up to 14 species inhabiting 18 coastal rivers, which became isolated c. 8,500 years ago. We specifically compared extinction probabilities obtained by seven theoretical models to investigate whether regional extinction rates (i.e. loss from a river system) were correlated to local extinction rates (i.e. loss from an occupied site) and the role of metapopulation dynamics to explain regional persistence.
  3. Using empirical data, we showed the importance of variables related to metapopulation dynamics to explain extinction rates across the 18 river systems. As expected, the regional extinction rate decreased with the colonisation rate, area, metapopulation size, and percentage of occupied localities. By contrast, an inconsistent relationship emerged between regional and local extinction rates, as species with high local extinction rates were not particularly prone to regional extinction.
  4. Our results provide strong support for the contribution of colonisation rates to explain persistence. Overall, our results show that the equilibrium number of occupied localities could be a good predictor of the long-term persistence of metapopulations in rivers. Finally, our results suggest the importance of connectivity to maintain sustainable populations within the river system.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号