首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structures of three most stable conformers ((1)C4, (4)C1, (2)S0) of methyl 2-O-sulfo-alpha-L-iduronate monosodium salt have been analyzed by DFT using the B3LYP/6-311++G** method. The optimized geometries confirmed the influence of both 2-O-sulfate and carboxylate groups upon the pyranose ring geometry. The computed energies showed that the chair (1)C4 form is the most stable one. Time-averaged DFT-calculated proton-proton and proton-carbon spin-spin coupling constants agree with the experimental data and indicate that only two chair forms contribute to the conformational equilibrium of methyl 2-O-sulfo-alpha-L-iduronate monosodium salt. The influence of the charged groups upon the magnitudes of spin-spin coupling constants is also discussed.  相似文献   

2.
The present study deals with the conformation in solution of two heparin octasaccharides containing the pentasaccharide sequence GlcN(NAc,6S)-GlcA-GlcN(NS,3,6S)-IdoA(2S)-GlcN(NS,6S) [AGA*IA; where GlcN(NAc,6S) is N-acetylated, 6-O-sulfated alpha-D-glucosamine, GlcN(NS,3,6S) is N,3,6-O-trisulfated alpha-D-glucosamine and IdoA(2S) is 2-O-sulfated IdoA (alpha-L-iduronic acid)] located at different positions in the heparin chain and focuses on establishing geometries of IdoA residues (IdoA(2S) and IdoA) both inside and outside the AGA*IA sequence. AGA*IA constitutes the active site for AT (antithrombin) and is essential for the expression of high anticoagulant and antithrombotic activities. Analysis of NMR parameters [NOEs (nuclear Overhauser effects), transferred NOEs and coupling constants] for the two octasaccharides indicated that between the 1C4 and 2S0 conformations present in dynamic equilibrium in the free state for the IdoA(2S) residue within AGA*IA, AT selects the 2S0 form, as previously shown [Hricovini, Guerrini, Bisio, Torri, Petitou and Casu (2001) Biochem. J. 359, 265-272]. Notably, the 2S0 conformation is also adopted by the non-sulfated IdoA residue preceding AGA*IA that, in the absence of AT, adopts predominantly the 1C4 form. These results further support the concept that heparin-binding proteins influence the conformational equilibrium of iduronic acid residues that are directly or indirectly involved in binding and select one of their equi-energetic conformations for best fitting in the complex. The complete reversal of an iduronic acid conformation preferred in the free state is also demonstrated for the first time. Preliminary docking studies provided information on the octasaccharide binding location agreeing most closely with the experimental data. These results suggest a possible biological role for the non-sulfated IdoA residue preceding AGA*IA, previously thought not to influence the AT-binding properties of the pentasaccharide. Thus, for each AT binding sequence longer than AGA*IA, the interactions with the protein could differ and give to each heparin fragment a specific biological response.  相似文献   

3.
The disaccharides IdoA(2SO3)-anManOH(6SO3) and IdoA-anManOH (where IdoA represents alpha-L-iduronate, anManOH represents 2,5-anhydro-D-mannitol and SO3 represents sulphate ester) were prepared from bovine lung heparin using HNO2 depolymerization, borohydride reduction and desulphation, and were examined by 400 MHz 1H-n.m.r. spectroscopy. Three-bond proton-proton coupling constants around the IdoA ring were determined under a range of experimental conditions. For unsulphated IdoA all four proton-proton coupling constants varied markedly as a function of temperature, pH and solvent, providing clear evidence for a rapid conformational equilibrium. These data were analysed in terms of the three most energetically stable IdoA conformers: 1C4, 4C1, and 2S0. Predicted coupling constants for these conformers were determined using a modified Karplus-type relationship. For unsulphated IdoA in dimethyl sulphoxide the equilibrium was provoked strongly in favour of a slightly distorted 4C1 'chair' IdoA conformer for which coupling constants have not previously been reported. For sulphated IdoA in aqueous conditions and at low pH the equilibrium is strongly in favour of the alternative 1C4 chair conformer. Under many conditions, however, significant contributions from all three conformers occur for the non-reducing terminal IdoA in these disaccharides.  相似文献   

4.
The conformation of the L-iduronate residue in non-sulphated di-, tetra- and hexa-saccharides and their alditol derivatives derived from rooster comb dermatan sulphate was investigated by 400 MHz 1H-n.m.r. spectroscopy. The ratio of conformational isomers is obtained by the average spin-spin coupling constants of a mixture of nearly isoenergetic conformers (1C4, 4C1 and 2S0). The non-reducing terminal L-iduronate residue in the tetrasaccharides (I-H-I-H and I-H-G-H) and their alditols (I-H-I-H-ol and I-H-G-H-ol) is in equilibrium with three conformers (1C4, 30%; 4C1, 40%; 2S0, 30%) of nearly equal population. Whereas the internal L-iduronate residue in the tetrasaccharides (I-H-I-H and G-H-I-H) exists as an equilibrium mixture of 1C4 (54%) and 2S0 (42-44%) conformers, that of their alditols (I-H-I-H-ol and G-H-I-H-ol) is in equilibrium between 2S0 conformer (66%) and 1C4 conformer (28%). The conformational population for the internal L-iduronate residue 2I in the hexasaccharide (3I-H-2I-H-1I-H) is also calculated and compared with that for the L-iduronate residue in native dermatan sulphate, which was calculated on the basis of the spin-spin coupling constants reported by Gatti, Casu, Torri & Vercellotti [(1979) Carbohydr. Res. 68, c3-c7].  相似文献   

5.
Oversulfated chondroitin sulfate H (CS-H) isolated from hagfish notochord is a unique dermatan sulfate consisting mainly of IdoAalpha1-3GalNAc(4S,6S), where IdoA, GalNAc, 4S and 6S represent L-iduronic acid, Nacetyl-D-galactosamine, 4-O-sulfate and 6-O-sulfate, respectively. Several tetra- and hexasccharide fractions were isolated from CS-H after partial digestion with bacterial chondroitinase B to investigate the sequential arrangement of the IdoAalpha1-3GalNAc(4S,6S) unit in the CS-H polysaccharide. A structural analysis of the isolated oligosaccharides by enzymatic digestions, mass spectrometry and 1H NMR spectroscopy demonstrated that the major tetrasaccharides shared the common disulfated core structure delta4,5HexAalpha1-3GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc (4S) with 0 approximately 3 additional O-sulfate groups, where delta4,5HexA represents 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid. The major hexasaccharides shared the common trisulfated core structure delta4,5HexAalpha1-3 GalNAc(4S)beta1-4 IdoAalpha1-3 GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc(4S) with 1 approximately 4 additional O-sulfate groups. Some extra sulfate groups in both tetra- and hexasaccharides were located at the C-2 position of a delta4,5HexA or an internal IdoA residue, or C-6 position of 4-O-sulfated GalNAc residues, forming the unique disulfated or trisulfated disaccharide units, IdoA (2S)-GalNAc(4S), IdoA-GalNAc(4S,6S) and IdoA (2S)-GalNAc(4S,6S), where 2S represents 2-O-sulfate. Of the demonstrated sequences, five tetra- and four hexasaccharide sequences containing these units were novel.  相似文献   

6.
The 1H-n.m.r. 3J values for the L-iduronic acid (IdoA) residues for solutions in D2O of natural and synthetic oligosaccharides that represent the biologically important sequences of dermatan sulfate, heparan sulfate, and heparin have been rationalized by force-field calculations. The relative proportions of the low-energy conformers 1C4, 2S0, and 4C1 vary widely as a function of sequence and of pattern of sulfation. When IdoA or IdoA-2-sulfate units are present inside saccharide sequences, only 1C4 and 2S0 conformations contribute significantly to the equilibrium. This equilibrium is displaced towards the 2S0 form when IdoA-2-sulfate is preceded by a 3-O-sulfated amino sugar residue, and towards the 1C4 form when it is a non-reducing terminal. For terminal non-sulfated IdoA, the 4C1 form also contributes to the equilibrium. N.O.e. data confirm these conclusions. Possible biological implications of the conformational flexibility and the counter-ion induced changes in conformer populations are discussed.  相似文献   

7.
The disulphated disaccharide IdoA(2SO3)-anManOH(6SO3) was prepared from bovine lung heparin by treatment with nitrous acid followed by borohydride reduction. The 1H- (400 MHz) and 13C-n.m.r. (100 MHz) spectra of this disaccharide derivative have been assigned completely using homonuclear spin-decoupling experiments, 13C-1H correlations, and a COSY-45 two-dimensional homonuclear correlation experiment. The 3JH,H values show that the IdoA(2SO3) residue exists in a single conformation throughout the temperature range 20-90 degrees.  相似文献   

8.
The monosaccharide 2-O-sulfo-α-l-iduronic acid (IdoA2S) is one of the major components of glycosaminoglycans. The ability of molecular mechanics force fields to reproduce ring-puckering conformational equilibrium is important for the successful prediction of the free energies of interaction of these carbohydrates with proteins. Here we report unconstrained molecular dynamics simulations of IdoA2S monosaccharide that were carried out to investigate the ability of commonly used force fields to reproduce its ring conformational flexibility in aqueous solution. In particular, the distribution of ring conformer populations of IdoA2S was determined. The GROMOS96 force field with the SPC/E water potential can predict successfully the dominant skew-boat to chair conformational transition of the IdoA2S monosaccharide in aqueous solution. On the other hand, the GLYCAM06 force field with the TIP3P water potential sampled transitional conformations between the boat and chair forms. Simulations using the GROMOS96 force field showed no pseudorotational equilibrium fluctuations and hence no inter-conversion between the boat and twist boat ring conformers. Calculations of theoretical proton NMR coupling constants showed that the GROMOS96 force field can predict the skew-boat to chair conformational ratio in good agreement with the experiment, whereas GLYCAM06 shows worse agreement. The omega rotamer distribution about the C5-C6 bond was predicted by both force fields to have torsions around 10°, 190°, and 360°.  相似文献   

9.
2-O-Sulfo-alpha-l-iduronic acid (IdoA2S) is one of the main components of heparin, an anticoagulant and antithrombotic polysaccharide able to potentiate the inhibitory effect of antithrombin over plasma serine proteases. This monosaccharide unit adopts an equilibrium between chair (1C4) and skew-boat (2SO) forms as a function of heparin sequence size and composition. Although the prevalence of the 1C4 chair conformation in monosaccharides is understood, the reasons for the increase in 2SO contribution in the whole polysaccharide chain are still uncertain. In this context, 0.2 mus molecular dynamics simulations of IdoA2S-containing oligosaccharides indicated that stabilization due to intramolecular hydrogen bonds around IdoA2S is highly correlated (p0.001) with the expected conformational equilibrium for this residue in solution. This behavior explains the known effect of different heparin compositions, at the monosaccharide level, on IdoA2S conformation in biological solutions.  相似文献   

10.
The solution structure of native and systematically modified ovine submaxillary mucin (OSM) has been probed by proton NMR spectroscopic methods. Most of the resonances in the spectra have been tentatively assigned to the peptide and O-linked disaccharide, alpha-N-acetylneuraminic acid 2----6 alpha-N-acetylgalactosamine protons. On the basis of the observed chemical shifts, spectral resolution, and behavior of the exchangeable protons it is concluded the mucin possesses internal segmental flexibility and exists in solution as a random coil peptide. No long-lived interresidue peptide or carbohydrate hydrogen bonds were detected. The removal of (i) the C8 and C9 carbons of the sialic acid residue, (ii) the entire sialic acid residue, and (iii) the complete disaccharide side chain resulted in no significant changes in peptide core conformation. A limited set of proton spin coupling constants and nuclear Overhauser enhancements has been obtained for the threonine glycopeptide side chains in native and modified mucin. The results are consistent with the previously reported conformations for the (1----6) linkage in oligosaccharides and the threonyl glycosidic linkage in glycopeptides. The OSM disaccharide may exist as a extended linear structure with rotational freedom about the GalNAc C5-C6 bond, while the threonine glycosidic linkage appears to be sterically constrained, although multiple conformations about the threonine C beta-O gamma bond may be allowed. The small chemical shift perturbations detected in the glycosylated threonine methyl protons and the GalNAc carbons upon removal of the terminal sialic acid residue are consistent with this model.  相似文献   

11.
A complex of the synthetic tetrasaccharide AGA*IM [GlcN, 6-SO3-alpha(1-4)-GlcA-beta(1-4)-GlcN,3, 6-SO3-alpha(1-4)-IdoA-alphaOMe] and the plasma protein antithrombin has been studied by NMR spectroscopy. 1H and 13C chemical shifts, three-bond proton-proton (3JH-H) and one-bond proton-carbon coupling constants (1JC-H) as well as transferred NOEs and rotating frame Overhauser effects (ROEs) were monitored as a function of the protein : ligand molar ratio and temperature. Considerable changes were observed at both 20 : 1 and 10 : 1 ratios (AGA*IM : antithrombin) in 1H as well as 13C chemical shifts. The largest changes in 1H chemical shifts, and the linewidths, were found for proton resonances (A1, A2, A6, A6', A1*, A2*, A3*, A4*) in GlcN, 6-SO3 and GlcN,3,6-SO3 units, indicating that both glucosamine residues are strongly involved in the binding process. The changes in the linewidths in the IdoA residue were considerably smaller than those in other residues, suggesting that the IdoA unit experienced different internal dynamics during the binding process. This observation was supported by measurements of 3JH-H and 1JC-H. The magnitude of the three-bond proton-proton couplings (3JH1-H2 = 2.51 Hz and 3JH4-H5 = 2.23 Hz) indicate that in the free state an equilibrium exists between 1C4 and 2S0 conformers in the ratio of approximately 75 : 25. The chair form appears the more favourable in the presence of antithrombin, as inferred from the magnitude of the coupling constants. In addition, two-dimensional NOESY and ROESY experiments in the free ligand, as well as transferred NOESY and ROESY spectra of the complex, were measured and interpreted using full relaxation and conformational exchange matrix analysis. The theoretical NOEs were computed using the geometry of the tetrasaccharide found in a Monte Carlo conformational search, and the three-dimensional structures of AGA*IM in both free and bound forms were derived. All monitored NMR variables, 1H and 13C chemical shifts, 1JC-H couplings and transferred NOEs, indicated that the changes in conformation at the glycosidic linkage GlcN, 6-SO3-alpha(1-4)-GlcA were induced by the presence of antithrombin and suggested that the receptor selected a conformer different from that in the free state. Such changes are compatible with the two-step model [Desai, U.R., Petitou, M., Bjork, I. & Olson, S. (1998) J. Biol. Chem. 273, 7478-7487] for the interaction of heparin-derived oligosaccharides with antithrombin, but with a minor extension: in the first step a low-affinity recognition complex between ligand and receptor is formed, accompanied by a conformational change in the tetrasaccharide, possibly creating a complementary three-dimensional structure to fit the protein-binding site. During the second step, as observed in a structurally similar pentasaccharide [Skinner, R., Abrahams, J.-P., Whisstock, J.C., Lesk, A.M., Carrell, R.W. & Wardell, M.R. (1997) J. Mol. Biol. 266, 601-609; Jin, L., Abrahams, J.-P., Skinner, R., Petitou, M., Pike, R. N. & Carrell, R.W. (1997) Proc. Natl Acad. Sci. USA 94, 14683-14688], conformational changes in the binding site of the protein result in a latent conformation.  相似文献   

12.
Fibroblast growth factors FGF-1 and FGF-2 mediate their biological effects via heparan sulfate-dependent interactions with cell surface FGF receptors. While the specific heparan sulfate domain binding to FGF-2 has been elucidated in some detail, limited information has been available concerning heparan sulfate structures involved in the recognition of FGF-1. In the current study we present evidence that the minimal FGF-1 binding heparan sulfate sequence comprises 5-7 monosaccharide units and contains a critical trisulfated IdoA(2-OSO3)-GlcNSO3(6-OSO3) disaccharide unit. N-Sulfated heparan sulfate decasaccharides depleted of FGF-1 binding domains showed dose-dependent and saturable binding to FGF-2. These data indicate that the FGF-1 binding domain is distinct from the minimal FGF-2 binding site, previously shown to contain an IdoA(2-OSO3) residue but no 6-O-sulfate groups. We further show that the FGF-1 binding heparan sulfate domain is expressed in human aorta heparan sulfate in an age-related manner in contrast to the constitutively expressed FGF-2 binding domain. Reduction of heparan sulfate O-sulfation by chlorate treatment of cells selectively impedes binding to FGF-1. The present data implicate the 6-O-sulfation of IdoA(2-OSO3)-GlcNSO3 units in cellular heparan sulfate in the control of the biological activity of FGF-1.  相似文献   

13.
During the biosynthesis of heparan sulfate (HS), glucuronyl C5-epimerase (Hsepi) catalyzes C5-epimerization of glucuronic acid (GlcA), converting it to iduronic acid (IdoA). Because HS 2-O-sulfotransferase (Hs2st) shows a strong substrate preference for IdoA over GlcA, C5-epimerization is required for normal HS sulfation. However, the physiological significance of C5-epimerization remains elusive. To understand the role of Hsepi in development, we isolated Drosophila Hsepi mutants. Homozygous mutants are viable and fertile with only minor morphological defects, including the formation of an ectopic crossvein in the wing, but they have a short lifespan. We propose that two mechanisms contribute to the mild phenotypes of Hsepi mutants: HS sulfation compensation and possible developmental roles of 2-O-sulfated GlcA (GlcA2S). HS disaccharide analysis showed that loss of Hsepi resulted in a significant impairment of 2-O-sulfation and induced compensatory increases in N- and 6-O-sulfation. Simultaneous block of Hsepi and HS 6-O-sulfotransferase (Hs6st) activity disrupted tracheoblast formation, a well established FGF-dependent process. This result suggests that the increase in 6-O-sulfation in Hsepi mutants is critical for the rescue of FGF signaling. We also found that the ectopic crossvein phenotype can be induced by expression of a mutant form of Hs2st with a strong substrate preference for GlcA-containing units, suggesting that this phenotype is associated with abnormal GlcA 2-O-sulfation. Finally, we show that Hsepi formed a complex with Hs2st and Hs6st in S2 cells, raising the possibility that this complex formation contributes to the close functional relationships between these enzymes.  相似文献   

14.
The structural properties of fibroblast heparan sulfate (HS) that are necessary for it to bind strongly to basic fibroblast growth factor (bFGF) have been investigated using bFGF affinity chromatography. Specific enzymic and chemical scission of HS, together with chemical N-desulfation, revealed that N-sulfate groups and iduronate-2-sulfates (IdoA(2-OSO3)) were essential for the interaction. bFGF-affinity chromatography of sulfated oligosaccharides released from HS by treatment with heparitinase led to the identification of an oligosaccharide component (oligo-H), seven disaccharides in length, with a similar affinity for bFGF as the parent molecule. Heparinase treatment of this fraction abolished the high affinity binding to bFGF. Analysis of oligo-H indicated that 74% of the disaccharide units had the structure IdoA(2-OSO3)alpha 1,4GlcNSO3; the remainder comprised N-acetylated and N-sulfated units, the majority of which were devoid of O-sulfate groups. Oligo-H was fully degraded to disaccharides by treatment with nitrous acid. These results indicate that the sequence of oligo-H is as shown below. delta GlcA beta 1,4GlcNSO3 alpha 1,4[IdoA(2-OSO3)alpha 1,4GlcNSO3]5 alpha 1, 4IdoA alpha 1,4GlcNAc Sulfated oligosaccharides of similar size but with a lower affinity for bFGF had a reduced concentration of IdoA(2-OSO3) but significant quantities of GlcNSO3(6-OSO3) and GlcNAc(6-OSO3). The data indicate a primary role for contiguous sequences of IdoA(2-OSO3)alpha 1,4GlcNSO3 in mediating the high affinity binding between fibroblast HS and bFGF.  相似文献   

15.
Radiolabelled disaccharide substrates for alpha-L-iduronidase, beta-D-glucuronidase, and sulfoiduronate sulfatase have been prepared from dermatan sulfate by application in sequence of N-deacetylation, deaminative cleavage, and reduction with NaBT4. The yield of disaccharides was approximately 87% of the total oligosaccharide fraction. Five disaccharides were isolated and tentatively identified. The major disaccharide, O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA-anT4S), represented approximately 75% of the total disaccharide fraction. The other disaccharides were O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA2S-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (GlcA-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 6-sulfate (GlcA-anT6S), and O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol (IdoA-anT), which represented approximately 4.5, 11.2, 1.0, and 1.8%, respectively, of the total disaccharide fraction. When incubated with cultured skin-fibroblasts from normal controls, IdoA-anT4S was shown to be a sensitive substrate for alpha-L-iduronidase to produce 2,5-anhydro-D-talitol 4-sulfate (anT4S). Activity toward IdoA-anT4S was not observed with fibroblast homogenates from alpha-L-iduronidase-deficient patients (Mucopolysaccharidosis Type I). Similarly, normal-fibroblast homogenates degraded GlcA-anT6S to anT6S, and GlcA-anT4S to anT4S, at a rate 6 to 8 times greater than found for fibroblasts from beta-D-glucuronidase-deficient patients (Mucopolysaccharidosis Type VII). IdoA-anT4S was hydrolysed by alpha-L-iduronidase at a rate 365 times greater than that for IdoA-anT. Sulfation of the anhydro-D-[1-3H]talitol residues is an important structural determinant in the mechanism of action of alpha-L-iduronidase on disaccharide substrates. IdoA2S-anT4S was degraded to IdoA-anT4S and then to anT4S by normal-fibroblast homogenates, whereas fibroblasts from alpha-L-iduronidase-deficient and sulfoiduronate sulfatase-deficient (Mucopolysaccharidosis Type II) patients produced considerably decreased levels of anT4s and IdoA-anT4S (and anT4S), respectively.  相似文献   

16.
Complete assignment of the (1)H and (13)C NMR spectra of all possible d-glucopyranosyl-d-glucopyranosides was performed and the (1)H chemical shifts and proton-proton coupling constants were refined by computational spectral analyses (using PERCH NMR software) until full agreement between the calculated and experimental spectra was achieved. To support the experimental results, the (1)H and (13)C chemical shifts and the spin-spin coupling constants between the non-hydroxyl protons of alpha- and beta-d-glucopyranose (1a and 1b) were calculated with density functional theory (DFT) methods at the B3LYP/pcJ-2//B3LYP/6-31G(d,p) level of theory. The effects of different glycosidic linkage types and positions on the glucose ring conformations and on the alpha/beta-ratio of the reducing end hydroxyl groups were investigated. Conformational analyses were also performed for anomerically pure forms of methyl d-glucopyranosides (13a and 13b) and fully protected derivatives such as 1,2,3,4,6-penta-O-acetyl-d-glucopyranoses (14a and 14b).  相似文献   

17.
The structure of the lipid A from S. typhimurium harboring the derepressed plasmids Col Ib is very similar: i, 1,4'-bis-phosphorylated-beta-1',6-linked glucosamine disaccharide forms a backbone of the lipid; ii, lipid preparations contain four residues of 3-hydroxytetradecanoic acid at positions C3, C3' and the amide linked at C2, C2' and two free hydroxyl groups at positions C4 and C6'. Differences concern: i, substitution of phosphoryl groups by 4-amino-4-deoxy-L-arabinopyranose and phosphorylethanolamine in S. typhimurium with Col Ib plasmids; ii, the degree of acylation of hydroxyl groups of 3-hydroxytetradecanoic acid by myristic, lauric and palmatic acids; iii, presence of tridecanoic acid bound to hydroxyl of 3-hydroxy-tetradecanate residue in S. typhimurium with Col Ibdrd2 plasmid. Lipopolysaccharides from the plasmid mutant strains express several times higher lethal toxicity in chick embryos compared to lipopolysaccharides from the strain with the wild type Col Ib.  相似文献   

18.
Theoretical calculations using the DFT theory at the B3LYP/6-311++G(**) level were used to determine the molecular geometry of various glycosaminoglycan (GAG) molecules. Three-bond proton-proton spin-spin coupling constants ((3)J(H-C-C-H)) were then computed and compared with the published experimental data of selected mono- and disaccharides. The computed (3)J(H-C-C-H) values showed a strong dependence on the molecular geometry and varied up to 12 Hz. This dependence was expressed in a simple analytical form relating (3)J(H-C-C-H) and torsion angles. The population of conformers in heparin and other biologically active GAGs has also been estimated using the computed coupling constants.  相似文献   

19.
The N----O sulfate transfer of heparin has been investigated as an approach to chemical 3-O-sulfation of the D-glucosamine residues in heparin. The pyridinium salt of porcine heparin was heated at 90 degrees C in solid state for 90 min (in vacuo over P2O5) to effect the transfer of the N-sulfate groups to the HO groups in the polysaccharide, followed by N-resulfation. The product (N----O sulfate-transferred, N-resulfated heparin (ST heparin] was depolymerized with HONO to generate a mixture of di- and higher oligosaccharides. The borohydride-reduced oligosaccharides were separated on Bio-Gel P-4 and DEAE-Sephacel. The disaccharide trisulfate fraction (10.4% yield) was found to be a mixture of nearly equal amounts of IdoA(2-SO4)-AManR(3,6-diSO4) and IdoA(2,3-diSO4)-AManR(6-SO4), where IdoA represents L-iduronic acid and AManR represents the alditol formed by reduction of 2,5-anhydro-D-mannose with NaBH4. Chemical and NMR spectroscopic analyses revealed that the N----O sulfate transfer proceeded preferentially at HO-3 positions in both 6-O-sulfo-D-glucosamine and 2-O-sulfo-L-iduronic acid residues. Chromatography on antithrombin III-Sepharose gel indicated that the structural change involved in ST heparin resulted in an obvious increase in the ability to bind antithrombin III. Biological examination also indicated that this structural change resulted in moderate increases in all the activities (blood anti-clotting, anti-Factor IIa, and anti-Factor Xa) and in the strength of intrinsic fluorescence of antithrombin III.  相似文献   

20.
The oversulphated galactosaminoglycans synthesized by rat mucosal mast cells were isolated from the small intestine of animals infected with the nematode Nippostrongylus brasiliensis, which causes proliferation of these cells. The 35S-labelled polysaccharides were degraded by digestion with chondroitinase ABC, and the structures of the disaccharide products were determined by cleavage with mercuric acetate followed by electrophoretic characterization of the resultant sulphated monosaccharides. It was concluded that about half of the disulphated disaccharide units in the polysaccharide consisted of chondroitin sulphate E-type structures [GlcA-GalNAc(4,6-di-OSO3)], in which both sulphate groups were located on the N-acetylgalactosamine unit. The remainder consisted of isomeric structures with one sulphate group on the N-acetylgalactosamine residue and one on the hexuronic acid unit and presumably represented the dermatan sulphate-type sequence [IdoA(2-OSO3)-GalNAc(4-OSO3)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号