首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The uptake and loss of water by roots of young barley plantshave been measured using tracer techniques in sand culture undercontrasting conditions of transpiration and water potentialdifference. The results are compared with direct potometricmeasurements of water uptake. The apparent resistance to flowof water changed in response to differences in water potentialbetween the leaves and the root medium and in transpirationrate. We examine the significance of this in relation to netloss of water and possible mobilization of nutrients from drysoil. With the aid of a mathematical model, some considerationis given to the role of the endodermis as a barrier to diffusivemovement of water in the older parts of the root system.  相似文献   

2.
The response of halophyte arrowleaf saltbush(Atriplex triangularis Willd)plants to a gradient of salt stress were investigatedwith hydroponically cultured seedlings.Under salt stress,both the Na~ uptake into root xylem and negative pressures inxylem vessels increased with the elevation of salinity(up to 500 mol/m~3)in the root environment.However,the increment innegative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions,evenwhen the osmotic potential of xylem sap is taken into consideration.The total water potential of xylem sap in arrowleafsaltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low,but a progressivelyincreased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observedwhen the salinity in the root environment was enhanced.The maximum gap was 1.4 MPa at a salinity level of 500 mol/m~3without apparent dehydration of the tested plants.This discrepancy could not be explained with the current theories inplant physiology.The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress wasand accompanied by an increase in the Na~ uptake into xylem sap.However,the relative Na~ in xylem exudates based onthe corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease.The results showedthat the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaClinto xylem when the radial reflection coefficient of the root was considerably small;and that arrowleaf saltbush could usesmall xylem pressures to counterbalance the salt stresses,either with the uptake of large amounts of salt,or with thedevelopment of xylem pressures dangerously negative.This strategy could be one of the mechanisms behind the highresistance of arrowleaf saltbush plants to salt stress.  相似文献   

3.
植物根系吸水过程中根系水流阻力的变化特征   总被引:3,自引:0,他引:3  
以植物根系吸水的人工模拟试验所测得的数据为依据,运用水流的电模拟原理,定理分析了不同土壤水分水平处理下植物根系吸水过程中根系水流阻力各主要分量的大小、变化规律及其相对重要性.结果表明,在同一水分水平处理中,植物根内木质部传导阻力(Rc)随生长时间的推移而减小,随土层深度的加深而增大,土根接触阻力(Rsr)、植物根系吸收阻力(Rr)随生长时间表现出先下降后上升阶段的动态变化特征;在不同水分水平处理中,Rc、Rsr、Rr均随土壤湿度减小而大幅度增大;在植物根系水流阻力各分量中,Rr占根系水流阻力的比例为55%~96%,Rsr约占根系水流阻力的4%~45%,而Rc仅占根系水流阻力的7×10-6,故Rr是决定植物根系吸水速率的重要因素  相似文献   

4.
Carbon Partitioning in Split Root Systems of Barley: Relation to Metabolism   总被引:3,自引:1,他引:2  
We tested four hypotheses for the control of partitioning ofphotoassimilated C-11 between the two halves of split root systemsof young barley plants. Our data supported the hypothesis thatphloem is unloaded without the use of metabolic energy, sinceseveral metabolic inhibitors applied to one half of a splitroot system reduced respiratory oxygen uptake without alteringimport of C-11. The hypothesis that rate of import C-11 is directlyrelated to metabolic activity in the root was rejected, since(a) certain inhibitors reduced respiration but not import and(b) exogenous sucrose reduced import into the root half to whichit was supplied. Our data were consistent with the hypothesisthat import is related to the total ability (metabolism plusstorage) of the sink to use sucrose. Treatments that would haveled to greatly decreased use of sucrose (iodoacetate inhibition)decreased import before those which would have led to a smallerdecrease in sucrose use (FCCP inhibition). These data, and thereduction in import to a root half supplied exogenously withsucrose, supported the hypothesis that the size of soluble sugarpools within the roots is, in the short-term, inversely proportionalto rate of import, the soluble sugar pools thus acting as amediator between rate of sucrose use and supply from the phloem.  相似文献   

5.
Transfer of excised maize root from wet sawdust to water causeda considerable reduction in the exudation rate of the root.After 1-day aging in water, the exudation rate increased about8-fold and the exudation continued for 3 days. Osmotic pressureof the exudate from the root decreased with time after excisionreaching almost zero in 2 days in spite of a high exudationrate. Concentrations of sugars, acids, Ca2+ and Mg2+ in theexudate decreased with the decrease of osmotic pressure, whilethe decrease in K+ concentration delayed and P1 concentrationincreased. The gas content of the root, especially of O2, increased duringaging in water. The accumulated O2 gas may promote water uptake,because degasification of the root by evacuation induced a decreaseof water uptake. Also, the longitudinal gradient of the O2 contentin the root coincides with the gradient of water uptake intensity. (Received February 7, 1982; Accepted July 2, 1983)  相似文献   

6.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Root Growth and Water Uptake by Maize Plants in Drying Soil   总被引:16,自引:0,他引:16  
Sharp, R. E and Da vies, W. J. 1985. Root growth and water uptakeby maize plants in drying soil.— J. exp. Bot. 36: 1441–1456. The influence of soil drying on maize (Zea mays L.) root distributionand use of soil water was examined using plants growing in thegreenhouse in soil columns. The roots of plants which were wateredwell throughout the 18 d experimental period penetrated thesoil profile to a depth of 60 cm while the greatest percentageof total root length was between 20–40 cm. High soil waterdepletion rates corresponded with these high root densities.Withholding water greatly restricted root proliferation in theupper part of the profile, but resulted in deeper penetrationand higher soil water depletion rates at depth, compared withthe well watered columns. The deep roots of the unwatered plantsexhibited very high soil water depletion rates per unit rootlength. Key words: Maize, roots, water deficit, soil water depletion  相似文献   

8.
The water fluxes and the CO2 exchange of three leaf succulents, Othonna opima, Cotyledon orbiculata and Senecio medley-woodii, with different leaf anatomy, growth form and CO2 fixation pathways (C3, CAM) were monitored with a gas exchange cuvette which was combined with a potometric system to quantify water uptake. Measurements, which are primarily valid for plants with a sufficient water supply, were made during 6 to 10 consecutive days under constant experimental conditions. Water uptake for 24 h exceeded water loss by transpiration only for a S, medley-woodii plant with 10 expanding but only 7 mature leaves. In this case the gained water evidently is put into leaf expansion. All other plants showed balanced transpiration and water uptake rates. O. opima and C. orbiculata have a similar life form, similar water storage volumes and the same natural habitat but their diurnal water uptake patterns differ significantly. In the C3 plant O. opima water uptake increased when the transpiration increased or transpiration rates were higher than uptake rates and vice versa. On the contrary the CAM plant C. orbiculata transpired during the dark period at constant or decreasing rates but showed steadily increasing uptake rates. Senecio medley-woodii- and C. orbiculata are CAM plants with similar diurnal water uptake patterns with its maximum in uptake during or towards the end of the CO2 dark fixation period. Water uptake of C. orbiculata was at its minimum at the end of the light period despite transpiration being maximal. The results were discussed considering the different CO2 fixation pathways. In the investigated CAM succulents, C. orbiculata and S. medley-woodii, the CAM influenced water uptake throughout the whole day and not only during the CO2 dark fixation period.  相似文献   

9.
10.
大麦根边缘细胞发育的生物学特性   总被引:18,自引:0,他引:18  
FDA—PI(fluorescein diacetate-propidium iodide)检测结果表明,在大麦种子萌发过程中,根边缘细胞(border cells)活性约为95%。0.5mol/L甘露醇有利于离体边缘细胞的生存。第一个边缘细胞几乎与初生根根尖同步出现,当根长为20—25mm时,边缘细胞数目达到最大值(约1400);移去全部边缘细胞48h后,又有新的边缘细胞形成。与25℃相比,15和35℃明显抑制根的伸长,但不明显抑制边缘细胞的发育。在边缘细胞诱导和发育过程中,边缘细胞的游离与根冠果胶甲基酯酶活性有密切的正相关性。  相似文献   

11.
Water stress, applied to the roots of six-day-old barley seedlingsmarkedly reduced the capacity of their leaves to synthesizeproteins during greening, a process that normally involves intensesynthetic activity. Upon illumination of etiolated seedlingsprotein synthesis commenced most rapidly in the basal region,and then declined in activity. Thereafter, in turn, the middleand apical regions exhibited a similar pattern of syntheticactivity; this is indicative of a ‘wave’ of proteinsynthesis progressing from the base of the leaf to the apexas greening proceeded. The synthesis of proteins varied bothquantitatively and qualitatively in different regions of theleaf during greening. For example, there was a noticeable increasein ribulose-1, 5-bisphosphate carboxylase synthesis in the apicalregion of the leaf compared to the basal region. Water stressreduced protein synthesis in all regions of the leaf, althoughmost effectively in the oldest, apical regions. Upon returnto full water status, the basal regions recovered the most rapidlyand to the greatest extent. Similar results were obtained whenboth intact greening leaves, and isolated segments from differentregions of the leaf were used. The reduction in protein synthesiselicited by water stress was not due to a selective quantitativechange in any particular protein; one protein, of an approximatemolecular weight of 60 kD, appeared to be synthesized only understress conditions. Key words: Water stress, Protein synthesis, Barley seedlings  相似文献   

12.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root : shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

13.
14.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

15.
The effect of root anatomy on water flow was studied in 7-d-oldcotton (Gossypium hirsutum L.) seedlings grown in solution culture.The total water flux of the intact root system was measuredusing a pressure chamber. Then successive terminal root sectionswere removed at 2,6,10 and 12 cm behind the root tip and theflux was remeasured after each successive cut was made. Xylemdevelopment at different distances behind the root apex wasstudied with a microscope using sections cut free-hand and stainedwith toluidine blue. Water flux increased with the removal ofsuccessive terminal root sections and this coincided with thedegree of basipetal primary xylem development. The large increasein water flux at 10 to 12 cm was associated with secondary xylemdevelopment and increased xylem vessel number. A comparison of water flow and xylem anatomy between roots withtetrarch (Stoneville 506 and Deltapine 41) and pentarch (T25strain) vascular bundle arrangements showed no significant differencesin the measured values of water flux for the primary root. Waterflux, estimated using Poiseuille's equation and measured xylemdimensions, was greater for the tetrarch roots, primarily becauseof the larger diameter of individual vessel elements. The increasednumber of vessel elements in the pentarch primary root of T25did not result in any apparent decrease in axial resistanceto water flow. Key words: Gossypium hirsutum L., roots, vascular bundle, xylem water flux, xylem  相似文献   

16.
Developmental patterns of lateral roots and their vascular differentiationwere investigated for Vitis vinifera L. cv. Shiraz to assessthe likely contribution of lateral roots to total water uptakeof plants subjected to different irrigation regimes. Correlationanalyses showed a significant positive correlation between mainroot diameter and the diameter of first order lateral rootsof well-watered plants, but in water-stressed plants the twowere not significantly correlated. The correlations betweendiameters of first order lateral roots and the diameters ofmain roots were greater than correlations between the lengthsof first order laterals and the diameters of main roots. Thesuberised surface area of well-watered main roots increasedfrom 4% of total surface area at 0·25 cm to 100% at 10cm from the tip, whereas that of stressed plants increased from15% at 0·25 cm to 100% at 5 cm from the tip. In all treatmentsthe highest linear density of first order laterals was about7 laterals cm-1 of main root. More than 50% of first order lateralshad diameters less than 0·05 cm, and more than 90% ofthem had lengths less than 5 cm. Calculations of axial resistancesbased on xylem diameter measurements suggest that the axialresistances of root segments may not be uniform along rootsas is often assumed in models of water uptake. Water flow intothe main roots via the lateral root pathway is likely to bemuch smaller than that via the direct radial flow pathway asonly about 1% of surface area of main roots is directly occupiedby lateral roots, leaving the other 99% of main root surfacearea available for the direct radial flow pathway.Copyright1994, 1999 Academic Press Axial resistance, grapevine (Vitis vinifera L. cv. Shiraz) roots, root diameter, root length, xylem vessels  相似文献   

17.
The relationship between root and leaf infection in 11 cultivars of barley ( Hordeum vulgare ) by different isolates of Bipolaris sorokiniana was investigated in young plants. Roots of 10-day-old seedlings, grown in filterpaper rolls, and the third leaf of 17-day-old seedlings were inoculated with the different isolates and a Disease Development Index (DDI) was calculated.
The rate of lesion development in leaves was higher than in roots, indicated by generally higher DDI after leaf inoculation than after root inoculation. Significant differences in resistance were found among the barley cultivars. Inoculation with different isolates of B. sorokiniana caused significant differences in DDI for both roots and leaves. In the leaves, but not in the roots, a significant cultivar–isolate interaction was found. No significant correlations, neither in isolate aggressiveness nor in cultivar reaction between root and leaf, were observed.  相似文献   

18.
Nuclear volumes and cell areas were determined for seven regionsof the meristem of roots of Zea mays. Roots were fixed in 10per cent neutral buffered formalin, in 3 per cent glutaraldehydeor in acetic acid/alcohol; they were prepared as sections oralls were teased apart. Mean volumes of interphase nuclei weresimilar in all regions of the root except the vascular tissueof the stele. Mean nuclear volumes and the overall range ofvolumes were similar in sub-populations of cells with differentproportions of G1, S and G2 cells, e.g. in row I of root capinitials, whose cells lack a G1 phase, and in quiescent centrecells, which are mainly in G1. Nuclear volume does not appearto be closely correlated with DNA content. Nuclear volumes covereda 6 to 12-fold range within a meristem and even within specificregions, in which cells are part of the same cell lineages,there was a 4- to 9-fold range. Nuclear volumes were comparedin sister cells in rows I and II of the root cap initials. In10 per cent of the pairs, sister nuclei had identical volumes;the other pain had different volumes and mean difference was68 µm3. Mechanisms by which this variability could begenerated are discussed, particularly asymmetry, at mitoses,of factors that regulate nuclear growth. Zea mays L., nuclear volume, cell size, root mcristem, DNA content, mitosis  相似文献   

19.
Studies of the Uptake of Nitrate in Barley : IV. Electrophysiology   总被引:12,自引:5,他引:12       下载免费PDF全文
Transmembrane electrical potential differences (Δψ) of epidermal and cortical cells were measured in intact roots of barley (Hordeum vulgare L. cv Klondike). The effects of exogenous NO3 on Δψ (in the concentration range from 100 micromolar to 20 millimolar) were investigated to probe the mechanisms of nitrate uptake by the high-affinity (HATS) and low-affinity (LATS) transport systems for NO3 uptake. Both transport systems caused depolarization of Δψ, demonstrating that the LATS (like the HATS) for NO3 uptake is probably mediated by an electrogenic cation (H+?) cotransport system. Membrane depolarization by the HATS was “inducible” by NO3, and saturable with respect to exogenous [NO3]. By contrast, depolarization by the LATS was constitutive, and first-order in response to external [NO3]. H+ fluxes, measured in 200 micromolar and in 5 millimolar Ca(NO3)2 solutions, failed to alkalinize external media as anticipated for a 2 H+:1 NO3 symport. However, switching from K2SO4 solutions (which were strongly acidifying) to KNO3 solutions at the same K+ concentration caused marked reductions in H+ efflux. These observations are consistent with NO3 uptake by the HATS and the LATS via 2 H+:1 NO3 symports. These observations establish that the HATS for nitrate uptake by barley roots is essentially similar to those reported for Lemna and Zea mays by earlier workers. There are, nevertheless, distinct differences between barley and corn in their quantitative responses to external NO3.  相似文献   

20.
Water uptake by Agave deserti and Ferocatus acanthodes was predictedusing a two-dimensional simulation model in which the soil arounda plant was divided into a series of layers and concentric cylindricalshells. Root lengths in 0.05 m thick soil layers were determinedfor both species in the field, where mean root depths were only0.11 m for A. deserti and 0.10 m for F. acanthodes. For a yearwith average precipitation (159 mm), 42 per cent of the annualprecipitation could be taken up by A. deserti and 25 per centby F. acanthodes. Predicted water uptake by both species wasgreater from the upper soil layers (above 0.15 m) for averageand dry years, but was greater from the deeper layers for awet year. The actual root distribution for both species ledto more water uptake than when all of the roots were in a singlelayer. The large number of days per year when the soil temperaturesexceeded 57 °C (the temperature for 50 per cent inhibitionof uptake of a vital stain by root cells) may exclude rootsfrom the 0.00–0.05 m soil layer, even though water uptakewhen all roots were located there was predicted to be maximal.Therefore, the observed root distribution of A. deserti andF. acanthodes may be limited near the soil surface by high temperaturesand at maximum depths by water availability for all but wetyears. Agave deserti, Ferocactus acanthodes, desert succulents, root system, root distribution, soil temperature, water uptake  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号