首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutant screen employing the ade6-M26 recombination hotspot was developed and used to isolate Schizosaccharomyces pombe mutants deficient in meiotic recombination. Nine rec mutations were recessive, defining six complementation groups, and reduced ade6 meiotic recombination 3-fold to greater than or equal to 300-fold when homozygous. Three recessive rec mutations analyzed further also reduced meiotic intragenic recombination at ura4 on chromosome III and intergenic recombination between pro2 and arg3 on chromosome I. The observed non-co-ordinate reductions of the recombinant frequencies in the three test intervals suggest a degree of locus (or intragenic vs. intergenic) specificity of the corresponding rec+ gene products. None of the mutations specifically inactivated the ade6-M26 hotspot. Additional rec genes may be identified with these methods.  相似文献   

2.
A. S. Ponticelli  E. P. Sena    G. R. Smith 《Genetics》1988,119(3):491-497
The ade6-M26 mutation of Schizosaccharomyces pombe has previously been reported to stimulate ade6 intragenic meiotic recombination. We report here that the ade6-M26 mutation is a single G----T nucleotide change, that M26 stimulated recombination within ade6 but not at other distinct loci, and that M26 stimulated meiotic but not mitotic recombination. In addition, M26 stimulated recombination within ade6 when M26 is homozygous; this result demonstrates that a base-pair mismatch at the M26 site was not required for the stimulation. These results are consistent with the ade6-M26 mutation creating a meiotic recombination initiation site.  相似文献   

3.
P Sch?r  J Kohli 《The EMBO journal》1994,13(21):5212-5219
The ade6-M26 mutation of Schizosaccharomyces pombe stimulates intragenic and intergenic meiotic recombination. M26 is a single base pair change creating a specific heptanucleotide sequence that is crucial for recombination hotspot activity. This sequence is recognized by proteins that may facilitate rate-limiting steps of recombination at the ade6 locus. To start the elucidation of the intermediate DNA structures formed during M26 recombination, we have analyzed the aberrant segregation patterns of two G to C transversion mutations flanking the heptanucleotide sequence in crosses homozygous for M26. At both sites the level of post-meiotic segregation is typical for G to C transversion mutations in S. pombe in general. Quantitative treatment of the data provides strong evidence for heteroduplex DNA being the major recombination intermediate at the M26 site. We can now exclude a double-strand gap repair mechanism to account for gene conversion across the recombination hotspot. Furthermore, the vast majority (> 95%) of the heteroduplexes covering either of the G to C transversion sites are produced by transfer of the transcribed DNA strand. These results are consistent with ade6-M26 creating an initiation site for gene conversion by the introduction of a single-strand or a double-strand break in its vicinity, followed by transfer of the transcribed DNA strands for heteroduplex DNA formation.  相似文献   

4.
J. B. Virgin  J. Metzger    G. R. Smith 《Genetics》1995,141(1):33-48
The ade6-M26 mutation of the fission yeast Schizosaccharomyces pombe creates a meiotic recombination hotspot that elevates ade6 intragenic recombination ~10-15-fold. A heptanucleotide sequence including the M26 point mutation is required but not sufficient for hotspot activity. We studied the effects of plasmid and chromosomal context on M26 hotspot activity. The M26 hotspot was inactive on a multicopy plasmid containing M26 embedded within 3.0 or 5.9 kb of ade6 DNA. Random S. pombe genomic fragments totaling ~7 Mb did not activate the M26 hotspot on a plasmid. M26 hotspot activity was maintained when 3.0-, 4.4-, and 5.9-kb ade6-M26 DNA fragments, with various amounts of non-S. pombe plasmid DNA, were integrated at the ura4 chromosomal locus, but only in certain configurations relative to the ura4 gene and the cointegrated plasmid DNA. Several integrations created new M26-independent recombination hotspots. In all cases the non-ade6 DNA was located >1 kb from the M26 site, and in some cases >2 kb. Because the chromosomal context effect was transmitted over large distances, and did not appear to be mediated by a single discrete DNA sequence element, we infer that the local chromatin structure has a pronounced effect on M26 hotspot activity.  相似文献   

5.
The effect of the strong promoter from the alcohol dehydrogenase gene on mitotic and meiotic intragenic recombination has been studied at the ade6 locus of the fission yeast Schizosaccharomyces pombe. A 700-bp fragment containing the functional adh1 promoter was used to replace the weak wild-type promoter of the ade6 gene. Analysis of mRNA showed that strains with this ade6::adh1 fusion construct had strongly elevated ade6-specific mRNA levels during vegetative growth as well as in meiosis. These increased levels of mRNA correlated with a 20- to 25-fold stimulation of intragenic recombination in meiosis and a 7-fold increased prototroph formation during vegetative growth. Analysis of flanking marker configurations of prototrophic recombinants indicated that simple conversions as well as conversions associated with crossing over were stimulated in meiosis. The strongest stimulation of recombination was observed when the adh1 promoter was homozygous. Studies with heterologous promoter configurations revealed that the highly transcribed allele was the preferred acceptor of genetic information. The effect of the recombinational hot spot mutation ade6-M26 was also investigated in this system. Its effect was only partly additive to the elevated recombination rate generated by the ade6::adh1 fusion construct.  相似文献   

6.
7.
J B Virgin  J P Bailey 《Genetics》1998,149(3):1191-1204
Homologous recombination is increased during meiosis between DNA sequences at the same chromosomal position (allelic recombination) and at different chromosomal positions (ectopic recombination). Recombination hotspots are important elements in controlling meiotic allelic recombination. We have used artificially dispersed copies of the ade6 gene in Schizosaccharomyces pombe to study hotspot activity in meiotic ectopic recombination. Ectopic recombination was reduced 10-1000-fold relative to allelic recombination, and was similar to the low frequency of ectopic recombination between naturally repeated sequences in S. pombe. The M26 hotspot was active in ectopic recombination in some, but not all, integration sites, with the same pattern of activity and inactivity in ectopic and allelic recombination. Crossing over in ectopic recombination, resulting in chromosomal rearrangements, was associated with 35-60% of recombination events and was stimulated 12-fold by M26. These results suggest overlap in the mechanisms of ectopic and allelic recombination and indicate that hotspots can stimulate chromosomal rearrangements.  相似文献   

8.
Schuchert P  Kohli J 《Genetics》1988,119(3):507-515
The ade6-M26 mutation of Schizosaccharomyces pombe increases conversion frequency in comparison with the nearby mutation ade6-M375. In order to investigate the effect of ade6-M26 on crossover frequency, heteroallelic ade6 duplications were constructed by integration of plasmids carrying the marker gene ura4. One ade6 gene carries either of the mutations M26 or M375 while the other ade6 copy carries the L469 mutation in both duplications. The duplication with ade6-M26 yields Ade(+) recombinants at significantly higher frequencies in meiosis, but not in mitosis. Tetrad analysis and physical characterization of spore clones from recombination tetrads demonstrate that conversions, unequal crossovers and intrachromatid exchanges occur at higher frequencies but with unaltered proportions among them. The conversion events show a pronounced bias when M26 is involved: they take place preferentially at the M26 allele. Thus the ade6-M26 mutation not only enhances conversion frequency as demonstrated before, but also crossover frequency. It displays the properties expected for a preferred site of initiation of general meiotic recombination. The duplications also yielded new information on ectopic recombination in S. pombe: ectopic crossovers occur in the duplications at much higher frequency than among naturally dispersed homologous sequences.  相似文献   

9.
C. Grimm  J. Bahler    J. Kohli 《Genetics》1994,136(1):41-51
At the ade6 locus of Schizosaccharomyces pombe flanking markers have been introduced as well as five silent restriction site polymorphisms: four in the 5' upstream region and one in the middle of the gene. The mutations ade6-706, ade6-M26 (both at the 5' end) and ade6-51 (middle of the gene) were used as partners for crosses with the 3' mutation ade6-469. From these three types of crosses, wild-type recombinants were selected and analyzed genetically to assess association with crossing-over and physically to determine conversion tract lengths. The introduced restriction site polymorphisms (five vs. only one) neither influenced the pattern of recombinant types nor the distribution of conversion tracts. The hotspot mutation M26 enhances crossing-over and conversion to the same proportion. M26 not only stimulates conversion at the 5' end, but does this also (to a lower extent) at the 3' end of ade6 at a distance of more than 1 kb. The majority of meiotic conversion tracts are continuous and postmeiotic segregation of polymorphic sites is rare. Conversion tracts are slightly shorter with M26 in comparison with its control 706. The mean minimal length of tracts varies from 670 bp (M26) to 890 bp (706) to 1290 bp (51). It is concluded that M26 acts as an initiation site of recombination or enhances initiation of recombination. M26 does not act by termination of conversion. A region of recombination initiation exists at the 5' end of the ade6 gene also in the absence of the ade6-M26 hotspot mutation.  相似文献   

10.
11.
During meiosis homologous chromosomes replicate once, pair, experience recombination, and undergo two rounds of segregation to produce haploid meiotic products. The rec8(+), rec10(+), and rec11(+) genes of the fission yeast Schizosaccharomyces pombe exhibit similar specificities for meiotic recombination and rec8(+) is required for sister chromatid cohesion and homolog pairing. We applied cytological and genetic approaches to identify potential genetic interactions and to gauge the fidelity of meiotic chromosome segregation in the mutants. The rec8(+) gene was epistatic to rec10(+) and to rec11(+), but there was no clear epistatic relationship between rec10(+) and rec11(+). Reciprocal (crossover) recombination in the central regions of all three chromosomes was compromised in the rec mutants, but recombination near the telomeres was nearly normal. Each of the mutants also exhibited a high rate of aberrant segregation for all three chromosomes. The rec8 mutations affected mainly meiosis I segregation. Remarkably, the rec10 and rec11 mutations, which compromised recombination during meiosis I, affected mainly meiosis II segregation. We propose that these genes encode regulators or components of a "meiotic chromatid cohesion" pathway involved in establishing, maintaining, and appropriately releasing meiotic interactions between chromosomes. A model of synergistic interactions between sister chromatid cohesion and crossover position suggests how crossovers and cohesion help ensure the proper segregation of chromosomes in each of the meiotic divisions.  相似文献   

12.
In the yeast Saccharomyces cerevisiae at least 10 genes are required to begin meiotic recombination. A new early recombination gene REC103 is described in this paper. It was initially defined by the rec103-1 mutation found in a selection for mutations overcoming the spore inviability of a rad52 spo13 haploid strain. Mutations in REC103 also rescue rad52 in spo13 diploids. rec103 spo13 strains produce viable spores; these spores show no evidence of meiotic recombination. rec103 SPO13 diploids produce no viable spores, consistent with the loss of recombination. Mutations in REC103 do not affect mitotic recombination, growth, or repair. These phenotypes are identical to those conferred by mutations in several other early meiotic recombination genes (e.g., REC102, REC104, REC114, MEI4, MER2, and SPO11). REC103 maps to chromosome VII between ADE5 and RAD54. Cloning and sequencing of REC103 reveals that REC103 is identical to SKI8, a gene that depresses the expression of yeast double-stranded (``killer') (ds)RNA viruses. REC103/SKI8 is transcribed in mitotic cells and is induced ~15-fold in meiosis. REC103 has 26% amino acid identity to the Schizosaccharomyces pombe rec14(+) gene; mutations in both genes confer similar meiotic phenotypes, suggesting that they may play similar roles in meiotic recombination.  相似文献   

13.
Y. Lin  K. L. Larson  R. Dorer    G. R. Smith 《Genetics》1992,132(1):75-85
The Schizosaccharomyces pombe rec7 and rec8 genes, which are required for meiotic intragenic recombination but not for mitotic recombination, have been cloned and their DNA sequences determined. Genetic and physical analyses demonstrated that the cloned fragments contained the rec genes rather than rec mutation suppressors. A 1.6-kb DNA fragment contained a functional rec7 gene, and a 2.1-kb fragment contained a functional rec8 gene. The nucleotide sequences of these fragments revealed open reading frames predicting 249 amino acids for the rec7 gene product and 393 amino acids for the rec8 gene product. Northern hybridization analysis showed that both rec gene mRNAs were detectable only at 2-3 hr after induction of meiosis. The absence of these mRNAs in mitosis and their disappearance at 4 hr and later in meiosis suggest that the rec7 and rec8 gene products may be involved primarily in the early steps of meiotic recombination in S. pombe.  相似文献   

14.
15.
16.
17.
18.
A. Gysler-Junker  Z. Bodi    J. Kohli 《Genetics》1991,128(3):495-504
A haploid Schizosaccharomyces pombe strain carrying a heteroallelic duplication of the ade6 gene was used to isolate mitotic recombination-deficient mutants. Recombination between the different copies of the ade6 gene can lead to Ade+ segregants. These are observed as growing papillae when colonies of a suitable size are replicated onto selective medium. We isolated mutants which show an altered papillation phenotype. With two exceptions, they exhibit a decrease in the frequency of mitotic recombination between the heteroalleles of the duplication. The two other mutants display a hyper-recombination phenotype. The 12 mutations were allocated to at least nine distinct loci by recombination tests. Of the eight rec mutants analyzed further, six were also affected in mitotic intergenic recombination in the intervals cen2-mat or cen3-arg 1. No effect on mitotic intragenic recombination was observed. These data suggest that mitotic gene conversion and crossing over can be separated mutationally. Meiotic recombination occurs at the wild-type frequency in all mutants investigated.  相似文献   

19.
20.
M. Zahn-Zabal  E. Lehmann    J. Kohli 《Genetics》1995,140(2):469-478
The M26 mutation in the ade6 gene of Schizosaccharomyces pombe creates a hot spot of meiotic recombination. A single base substitution, the M26 mutation is situated within the open reading frame, near the 5' end. It has previously been shown that the heptanucleotide sequence 5' ATGACGT 3', which includes the M26 mutation, is required for hot spot activity. The 510-bp ade6-delXB deletion encompasses the promoter and the first 23 bp of the open reading frame, ending 112 bp upstream of M26. Deletion of the promoter in cis to M26 abolishes hot spot activity, while deletion in trans to M26 has no effect. Homozygous deletion of the promoter also eliminates M26 hot spot activity, indicating that the heterology created through deletion of the promoter per se is not responsible for the loss of hot spot activity. Thus, DNA sequences other than the heptanucleotide 5' ATGACGT 3', which must be located at the 5' end of the ade6 gene, appear to be required for hot spot activity. While the M26 hotspot stimulates crossovers associated with M26 conversion, it does not affect the crossover frequency in the intervals adjacent to ade6. The flanking marker ura4-aim, a heterology created by insertion of the ura4(+) gene upstream of ade6, turned out to be a hot spot itself. It shows disparity of conversion with preferential loss of the insertion. The frequency of conversion at ura4-aim is reduced when the M26 hot spot is active 15 kb away, indicating competition for recombination factors by hot spots in close proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号