首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hybridoma cell lines producing monoclonal antibodies (MAbs) against a hemagglutinin/protease (HA/P) from Vibrio cholerae non-01 were produced and characterized. The two MAbs contained the kappa light chain and were IgG1 type. They similarly neutralized HA/P protease activity derived from both V. cholerae non-01 and V. cholerae 01, whereas they were unable to neutralize the hemagglutinating activity of HA/P, suggesting that the epitopes for protease and hemagglutination activities are different. Western blotting analysis and the cross-neutralization test with the two MAbs confirmed the identity of HA/P produced by V. cholerae non-01 and 01. This study also suggests that HA/P of V. cholerae and a protease of V. parahaemolyticus are immunologically unrelated.  相似文献   

2.
Abstract The effect of Vibrio cholerae non-O1 protease on host defense proteins (lysozyme, secretory immunoglobullin A and lactoferrin) was studied in relation to its virulence mechanism. The proteins treated with the protease were analysed by SDS-PAGE. There was no influence of the protease on lysozyme. The protease cleaved lactoferrin into two fragments of 50 kDa and 34 kDa. N-terminal amino acid sequencing of these fragments revealed that the cleavage site was near the hinge region, between serine 420 and serine 421. This cleavage could affect the transition from open to closed configuration which is involved in iron binding and release. The anti-bacterial activity of lactoferrin was not affected by protease treatment. Secretory immunoglobulin A yielded a 42-kDa protein as the cleavage product. The susceptibility of secretory immunoglobulin A to V. cholerae non-O1 protease suggests a mechanism by which bacteria might evade the effect of this immunoglobulin.  相似文献   

3.
A cell-associated mannose/glucose-specific hemagglutinin (MSHA) has been purified from a strain of Vibrio cholerae O1 by chromatography on a chitin column followed by affinity purification on Sephadex G100. The purified protein gave a single stained band of 40 kDa by SDS-PAGE, exhibited high affinity towards D-mannose and D-glucose but was resistant to L-fucose and N-acetyl-D-glucosamine. The purified MSHA was revealed as a globular form of protein under electron microscope. In immunodiffusion tests the purified MSHA produced a single precipitin band against homologous antisera and antisera raised against the whole cell bacteria without any reactivity towards antisera raised against the purified N-acetyl-D-glucosamine-specific lectin of the same bacterial strain. Immunogold labelling confirmed the location of hemagglutinin on the surface of the bacteria. Purified MSHA reacted strongly with sera from convalescent cholera patients in immunodiffusion tests.  相似文献   

4.
Ca2+-Requiring proteases degrade cytosolic and integral membrane proteins as well as alter, by limited proteolysis, the activity of certain protein kinases. When cells are lysed, a Ca2+-requiring protease degrades the epidermal growth factor (EGF) receptor, an integral membrane protein with an intrinsic kinase activity, from its 170-kDa form to a 150-kDa form. This Ca2+-requiring protease has all of the characteristics of calcium-activated neutral protease (CANP). To show that CANP is the protease uniquely responsible for the degradation of the native EGF receptor in vitro, CANP was highly purified from beef lung. This affinity purified CANP had properties previously described for other CANPs: heterodimer of 80 and 30 kDa; neutral pH optimum; activation by millimolar Ca2+; and inhibition by an endogenous, heat-stable proteinaceous inhibitor, by leupeptin, and by sulfhydryl alkylating agents. Using the EGF receptor labeled by covalent attachment to 125I-EGF, this purified CANP quantitatively generated the 150-kDa form from the native receptor in A-431 cell membranes. As with the native receptor, the 150-kDa receptor forms produced by the endogenous Ca2+-requiring protease, by CANP, by chymotrypsin, and by elastase were all capable of EGF-stimulated autophosphorylation. When the 150-kDa receptor forms were generated by the three exogenously added proteases, autophosphorylation with [gamma-32P]ATP followed by trypsinization produced 32P-labeled peptides that were not the same. However, the tryptic 32P-labeled peptides from the autophosphorylated 150-kDa receptor form produced by CANP or by the endogenous Ca2+-requiring protease were identical. These data indicate that CANP is identical to the endogenous Ca2+-requiring protease responsible for producing the autophosphorylating 150-kDa receptor form from the native EGF receptor when cells are lysed.  相似文献   

5.
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1.  相似文献   

6.
A new, rapid method for purification of inositol(1,4,5)P3 3-kinase in high yield from rat brain is described. Purified enzyme exhibited a polypeptide of Mr = 53,000 on sodium dodecyl sulfate-polyacrylamide gel and a specific activity of 29 mumol/min/mg at 37 degrees C in the absence of calmodulin. Inclusion of calpain inhibitors was critical for obtaining the 53-kDa protein as the major product and 0.1% of the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethylamino]-2-propanesulfonate, was necessary to stabilize enzyme activity. In the absence of calpain inhibitors, the 53-kDa protein degraded progressively during purification and yielded a mixture containing polypeptides of various sizes. Relative intensity of these degradation products on sodium dodecyl sulfate-polyacrylamide gel varied from one preparation to another. However, broad band(s) at the 42-45 kDa region and a band at 35 kDa were always weak, while bands of 53, 51, 40 (sometimes doublets), 33, and 32 KDa were usually strong. The fact that all of these polypeptides including the weak bands of 42-45 and 35 kDa were derived from the 53 kDa form was confirmed by their immunocross-reactivity with monoclonal antibodies to the 53 kDa form. When the 51, 40, and a mixture of the 33 and 32 kDa forms were obtained separately and nearly free from other forms, each of them exhibited catalytic activity. Nevertheless, calmodulin binds to polypeptides larger than 35,000 but not to the 33 and 32 kDa forms. Incubation of the purified 53 kDa form with calpain generated a fragmentation pattern nearly identical to that generated during purification in the absence of calpain inhibitors. Incubation with five other endoproteases produced proteolytic fragments slightly different from those by calpain. However, the general fragmentation patterns generated by the proteases were similar, suggesting that inositol(1,4,5)P3 3-kinase contains several motifs susceptible to a variety of proteases.  相似文献   

7.
Abstract The hemagglutinating activity and carbohydrate specificity of cholera toxin (cholera enterotoxin) was studied using hemagglutination and hemagglutination inhibition. Hemagglutination was obtained with cholera toxin at >108 μg/ml for human types A, B, and O erythrocytes, >216 μg/ml for chicken erythrocytes, and >865 μg/ml for sheep erythrocytes. When the erythrocytes were treated with either neuraminidase or pronase, the hemagglutinating activity of cholera toxin was enhanced about 8- to 32-fold. Hemagglutination of pronase-treated human type B erythrocytes induced by cholera toxin was inhibited by lactose, galactose, melibiose and l -arabinose. Lactose was the most effective of the mono-, di-, and polysaccharides used as inhibitors, being a slightly better inhibitor than galactose, and much more potent than melibiose. These results suggest that cholera toxin is a bacterial lectin specific for galactose and/or lactose.  相似文献   

8.
Calcium-dependent protease activity was found associated with a neurofilament-enriched cytoskeleton isolated from the bovine spinal cord. The protease was extracted from the cytoskeleton by 0.6 M KCl, and purified to apparent homogeneity (3300-fold) by chromatography on organomercurial-Sepharose 4B, casein-Sepharose 4B, and Sepharose CL-6B. A cytosolic calcium-dependent protease was similarly purified from the bovine spinal cord, after the cytosol was fractionated on DEAE-cellulose. Both cytoskeleton-bound and cytosolic enzymes had an apparent molecular mass of 100 kDa as judged by gel filtration, and consisted of two subunits (79 kDa and 20 kDa) upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Both enzymes exhibited caseinolytic activity with 0.5 mM Ca2+ and above, and the activity was strongly inhibited by various thiol protease inhibitors. In the presence of 0.1-0.2 mM Ca2+, the 68-kDa and 160-kDa components, and to a lesser extent the 200-kDa component, of the neurofilament triplet polypeptides were degraded by the cytosolic protease, whereas the cytoskeleton-bound protease needed two-fold higher concentration of Ca2+ to degrade the neurofilaments. Nevertheless, the cytoskeleton-bound protease in situ, i.e. before its extraction form the cytoskeleton by 0.6 M KCl, preferentially degraded the 160-kDa component in the presence of 0.1-0.2 mM Ca2+, suggesting that a proper locational relation of this enzyme to the neurofilament structure is a prerequisite to its preference for the 160-kDa component. It appears that a factor or factors involved in such an interaction between the protease and the neurofilament were eliminated during the course of enzyme purification. The glial fibrillary acidic protein was almost insensitive to the proteases purified in the present study.  相似文献   

9.
Clostridium difficile is a nosocomial pathogen involved in antibiotic-associated diarrhea. C. difficile expresses a cysteine protease, Cwp84, which has been shown to degrade some proteins of the extracellular matrix and play a role in the maturation of the precursor of the S-layer proteins. We sought to analyze the localization and the maturation process of this protease. Two identifiable forms of the protease were found to be associated in the bacteria: a form of ~80 kDa and a cleaved one of 47 kDa, identified as the mature protease. They were found mainly in the bacterial cell surface fractions and weakly in the extracellular fraction. The 80-kDa protein was noncovalently associated with the S-layer proteins, while the 47-kDa form was found to be tightly associated with the underlying cell wall. Our data supported that the anchoring of the Cwp84 47-kDa form is presumably due to a reassociation of the secreted protein. Moreover, we showed that the complete maturation of the recombinant protein Cwp84(30-803) is a sequential process beginning at the C-terminal end, followed by one or more cleavages at the N-terminal end. The processing sites of recombinant Cwp84 are likely to be residues Ser-92 and Lys-518. No proteolytic activity was detected with the mature recombinant protease Cwp84(92-518) (47 kDa). In contrast, a fragment including the propeptide (Cwp84(30-518)) displayed proteolytic activity on azocasein and fibronectin. These results showed that Cwp84 is processed essentially at the bacterial cell surface and that its different forms may display different proteolytic activities.  相似文献   

10.
A new simple purification method (I) for Vibrio cholerae non-O1 hemagglutinin/protease (NAG-HA/P) was developed. The method (I) requires only an immunoaffinity column chromatography using a monoclonal antibody against NAG-HA/P. The method (I) is much simpler than previously reported purification method (II) (Honda, T. et al, Infection and Immunity 57: 2799-2803, 1989) which required four or more complicated chromatographic procedures. Method (I) also gave an improved recovery rate (about 27%) compared with (II). The molecular weight of NAG-HA/P purified by method (I) was mainly 34 kilodaltons (kDa) with a little of 32 kDa, whereas that of NAG-HA/P purified by (II) was usually 32 kDa. Immunological analysis by the Ouchterlony double gel diffusion test and Western blotting test using polyclonal antibody against 32 kDa protein revealed that the 34 and 32 kDa proteins are immunologically indistinguishable and thus it is supposed that 34 K protein is an isoform or a preform of the 32 K protein.  相似文献   

11.
H J Goren  M F White  C R Kahn 《Biochemistry》1987,26(8):2374-2382
We have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the beta-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22 degrees C with low concentrations (5-10 micrograms/mL, pH 7.4) of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the beta-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. Mild trypsin digestion reduced the apparent molecular mass of the beta-subunit from 95 to 85 kDa, and then to 70 kDa. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the beta-subunit (alpha Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the beta-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. Treatment of the intact receptor with staphylococcal V8 protease also converted the beta-subunit to an 85-kDa fragment that did not bind to alpha Pep-1, contained about 50% of the initial radioactivity, and lacked pY2 and pY3. Elastase rapidly degraded the receptor to inactive fragments between 37 and 50 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The distribution of Vibrio cholerae O1 pili consisting of 16 kDa subunit protein (16K-pili) was examined by Western blotting, using 211 strains from various origins and specific anti-16K-pili sera. The 16 kDa protein was detected in all 211 strains. The pili were purified from 3 El Tor and 3 classical strains, and characterized by hemagglutination and inhibition tests. All purified pili were hemagglutinative. However, the hemagglutinating activity of classical pili disappeared after exposure to 5 M urea and the agglutination induced by the classical pili was inhibited by D -mannose, alpha-methylmannoside, D -glucose and N-acetylglucosamine. On the contrary, El Tor pili were resistant to these sugars and urea.  相似文献   

14.
Each isolate of Neisseria gonorrhoeae produces one of two distinct immunoglobulin A1 (IgA1) proteases, type 1 or type 2, which are known to possess different cleavage specificities for peptide bonds in the hinge region of human IgA1. Both proteases were secreted into the culture medium throughout exponential growth; however, the activity level of the type 2 protease was 10-fold that observed for the type 1 enzyme. The type 2 protease was quite stable and resistant to a variety of inhibitors. In contrast, the type 1 enzyme was highly unstable and inhibited by low concentrations of metal chelators, salts, and thiol- or serine-specific chemical reagents. Both types of gonococcal IgA1 protease were purified from broth culture supernatants by a combination of anion-exchange, chromatofocusing, and molecular sieve chromatography techniques. The stable type 2 enzyme comprised a 114-kilodalton (kDa) peptide which converted to a still active 109-kDa peptide during isolation. In contrast, the type 1 protease possessed a 112-kDa peptide which did not convert to a smaller form and which could not be dissociated from peptides of 34 and 31 kDa without complete loss of enzyme activity.  相似文献   

15.
An N-acetyl-D-glucosamine-specific cell associated hemagglutinin (HA) was isolated and purified from a strain of Vibrio cholerae 01 by chitin affinity chromatography followed by separation on Bio Gel P-150. A single stained protein band of 47 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was observed with the purified HA. HA-antisera produced a single precipitin band against the purified HA in an immunodiffusion test without exhibiting any reactivity towards purified lipopolysaccharide (LPS). Purified HA, used as solid-phase antigen in an enzyme-linked immunosorbent assay (ELISA), reacted strongly with HA-antisera but cross-reacted negligibly with antisera raised against purified LPS. Hemagglutinating activity of the purified HA was highly sensitive to N-acetyl-D-glucosamine. The immunogold-labelling method using HA-antisera confirmed the location of the HA on the surface of the bacterial cells. The HA-antisera reacted with a protein component of the homologous outer membrane preparation. A significant inhibition was observed in the adhesive capability of the V. cholerae 01 strain to isolated rabbit intestinal epithelial cells (RIEC) in vitro when the later were pre-treated with the purified HA.  相似文献   

16.
A gene (apk) encoding the extracellular protease of Aeromonas caviae Ae6 has been cloned and sequenced. For cloning the gene, the DNA genomic library was screened using skim milk LB agar. One clone harboring plasmid pKK3 was selected for sequencing. Nucleotide sequencing of the 3.5 kb region of pKK3 revealed a single open reading frame (ORF) of 1,785 bp encoding 595 amino acids. The deduced polypeptide contained a putative 16-amino acid signal peptide followed by a large propeptide. The N-terminal amino acid sequence of purified recombinant protein (APK) was consistent with the DNA sequence. This result suggested a mature protein of 412 amino acids with a molecular mass of 44 kDa. However, the molecular mass of purified recombinant APK revealed 34 kDa by SDS-PAGE, suggesting that further processing at the C-terminal region took place. The 2 motifs of zinc binding sites deduced are highly conserved in the APK as well as in other zinc metalloproteases including Vibrio proteolyticus neutral protease, Emp V from Vibrio vulnificus, HA/P from Vibrio cholerae, and Pseudomonas aeruginosa elastase. Proteolytic activity was inhibited by EDTA, Zincov, 1,10-phenanthroline and tetraethylenepentamine while unaffected by the other inhibitors tested. The protease showed maximum activity at pH 7.0 and was inactivated by heating at 80 C for 15 min. These results together suggest that APK belongs to the thermolysin family of metalloendopeptidases.  相似文献   

17.
Y W Rong  P L Carl 《Biochemistry》1990,29(2):383-389
We have reinvestigated the molecular weight and subunit composition of calf thymus ribonuclease H1. Earlier studies suggested a variety of molecular weights for the enzyme in the range of 64K-84K and reported that the enzyme either was a single polypeptide of 74 kDa or consisted of from two to four subunits in the range of 21-34 kDa. Although we too find bands in this lower molecular weight range in our highly purified preparations following SDS-PAGE, our data suggest that the native structure of RNase H1 is a dimer of 68-kDa subunits. The evidence includes the following: (1) Western blot analysis of fractions taken at various stages of the purification indicates that the predominant antigenic form of the enzyme in crude extracts has a molecular weight of 68K but that during purification in the absence of sufficient protease inhibitors a variety of lower molecular weight forms appear concomitant with the disappearance of the 68-kDa band. (2) Activity gel analysis of the highly purified enzyme prepared in the presence of a battery of protease inhibitors reveals that the 68-kDa band (as well as several bands of lower molecular weight) possesses RNase H activity. (3) The 68-kDa band recognized by Western blotting with anti-RNase H immune sera is not detected by using preimmune sera. Furthermore, when immune sera are used, a trace of a 140-150-kDa antigenic form can sometimes be detected, consistent with the existence of a dimeric form of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Proteolytic activation of hemagglutinin, an envelope glycoprotein of the influenza virus, by host proteases is essential for infection and proliferation of the virus. However, there is no well-defined, inherent source of host proteases in man or swine, both of which are natural hosts for human influenza viruses. We have recently isolated a 32 kDa protein in a high salt extract from porcine lungs, which possess the hemagglutinin processing activity. In this study, we attempted to purify another hemagglutinin processing enzyme from porcine lung. The purified enzyme, named tryptase TC30, exhibited a molecular mass of about 30 kDa by SDS-PAGE and 28.5 kDa by gel filtration chromatography, suggesting that it is a monomer. Tryptase TC30 cleaved peptide substrates with Arg at the P1 position, and preferentially substrates with the Ser-Ile-Gin-Ser-Arg sequence corresponding to the HA cleavage site sequence of the A/PR/8/34 influenza virus. Among various inhibitors tested, trypsin-type serine protease inhibitors, such as aprotinin, antipain, benzamidine and leupeptin, efficiently inhibited the proteolytic activity of the enzyme. The N-terminal 40 amino acid sequence of tryptase TC30 exhibits more than 60% homology to mast cell tryptases from mice MCP-6 and human tryptase-alpha and -beta. These data indicate that tryptase TC30, the 30 kDa enzyme from porcine lung, is a novel hemagglutinin-cleaving enzyme.  相似文献   

19.
An estrogen-induced 52-kDa glycoprotein secreted by human breast cancer cells and able to autostimulate the growth of MCF7 cells has been purified, using monoclonal antibodies, and characterized. The protein contains mannose 6-phosphate signals on its N-linked high-mannose chains, suggesting that it is a lysosomal enzyme. Both the secreted 52-kDa protein and its processed cellular forms (52-, 48- and 34-kDa) were identified as carboxyl proteinases having an optimal activity at pH 3.5 and being specifically inhibited by pepstatin. This protease is characterized by its inducibility by estrogens and its high concentration in proliferative benign and malignant mammary tissue, when detected by immunohistochemistry. The estrogen-induced secretion of this protease may help to understand how estrogens stimulate mammary tumor growth and/or invasion.  相似文献   

20.
Stearoyl-CoA desaturase (SCD) is an integral membrane protein of the endoplasmic reticulum that is rapidly and selectively degraded when isolated liver microsomes are incubated at 37 degrees C. We previously reported the purification of a 90-kDa microsomal protein with SCD protease activity and characterized the inhibitor sensitivity of the protease. Here we show that the 90-kDa protein is a microsomal form of plasminogen (Pg) and that the purified SCD protease contains a spectrum of plasmin-like derivatives. The 90-kDa protein was identified as Pg by mass spectrometry of its tryptic peptides. The purified SCD protease reacted with Pg antibody, and immunoblotting demonstrated enrichment of Pg by the purification procedure established for the SCD protease. Analysis of microsomes by zymography demonstrated a single band of proteolytic activity at 70-kDa corresponding to the mobility of Pg in nonreduced polyacrylamide gels. When microsomes were incubated at 37 degrees C prior to zymography, an intense band of proteolytic activity developed at 30-kDa. The purified SCD protease displayed a spectrum of proteolytic bands ranging from 70 to 30 kDa. Degradation of SCD by the purified protease and by microsomes was inhibited by bdellin, a plasmin inhibitor from the medicinal leech Hirudo medicinalis. To explore the role of Pg in the degradation of SCD in vivo, we examined SCD expression and degradation in microsomes isolated from Pg-deficient (Pg-/-) mice. Compared with microsomes from wild-type littermate control mice, liver microsomes from Pg-/- mice had significantly higher levels of SCD. Degradation of SCD in microsomes from Pg-/- mice was markedly diminished, whereas liver microsomes from control mice showed rapid SCD degradation similar to that observed in rat liver microsomes. These findings indicate that SCD is degraded by a protease related to Pg and suggest that plasmin moonlights as an intracellular protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号