首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The stable isotope compositions (C and N) of plants and animals of a marsh dominated by Spartina alterniflora in the Delaware Estuary were determined. The study focused on the juvenile stage of the Atlantic blue crab, Callinectes sapidus, and the importance of marsh-derived diets in supporting growth during this stage. Laboratory growth experiments and field data indicated that early juvenile blue crabs living in the Delaware Bay habitat fed primarily on zooplankton, while marsh-dwelling crabs, which were enriched in 13C relative to bay juveniles, utilized marsh-derived carbon for growth. In laboratory experiments, the degree to which juvenile blue crabs isotopically fractionated dietary nitrogen, as well as the growth rate, depended on the protein quality of the diet. The range of δ13C of amino acids in laboratory-reared crabs and their diets was almost 20‰, similar to the isotopic range of amino acids of other organisms. In laboratory studies, the δ13C of nonessential and essential amino acids in the diet were compared to those in juvenile crabs. Isotopic fractionation at the molecular level depended on diet quality and the crabs' physiological requirements. Comparison of whole-animal isotope data with individual amino acid C isotope measurements of wild juvenile blue crabs from the bay and marsh suggested a different source of total dietary carbon, yet a shared protein component, such as zooplankton. Received: 1 July 1998 / Accepted: 15 March 1999  相似文献   

3.
As environmental change persists, understanding resource use patterns is of value to predict the consequences of shifting trophic structures. While many sharks are opportunistic predators, some exhibit prey selectivity, putting them at higher risk compared to species with greater trophic plasticity. In the Gulf of Mexico (GOM), Clupeids and Sciaenids comprise 69% of blacktip shark (Carcharhinus limbatus) diets, which is consequential considering potential responses of these prey groups to disturbance and over harvesting. We assessed if blacktips exhibit selectivity for Clupeids and Sciaenids in the western GOM based on stomach contents from sharks in coastal Texas. Clupeids comprised <2% of diets, while striped mullet (Mugil cephalus) and red drum (Sciaenops ocellatus) comprised >70% of identifiable prey. Ontogenetic shifts from smaller (Clupeids, small Sciaenids) to larger, higher trophic level (Ariidae, Elasmobranchii) prey fits our understanding of foraging among coastal sharks, and suggests our regional understanding of blacktip trophic ecology may be limited by the sizes of sampled sharks. Observed increases in blacktip densities coupled with declines in prey (Mugilids, Sciaenids) is concerning if blacktips have limited diet plasticity. Yet GOM blacktips may be more generalized than previously thought, which is promising for conservation and management.  相似文献   

4.
Northern pike (Esox lucius) are often considered to be specialist piscivores, but under some circumstances will continue to eat invertebrates as adults. To examine effects of fish assemblage composition on the trophic ecology of pike, we combined stable isotope analysis (SIA) of carbon and nitrogen and stomach content analysis (SCA) on pike from five lakes in northern Alberta, three of which contain only pike (“pike-only”) and two that also contain yellow perch (Perca flavescens) or white sucker (Catostomus commersoni) (“pike-other”). Fish were more important as prey and empty stomachs, which often characterize piscivores, were significantly more frequent in pike-other than in pike-only lakes. However, even though invertebrates were more important for pike in pike-only lakes, SIA and SCA indicated that invertebrates were also an important component of pike diets in pike-other lakes. SIA and SCA also revealed considerable intrapopulation variation in trophic ecology, with individuals in some populations differing by as much as two trophic levels. Comparisons of stomach contents and isotope signatures of the same fish suggested that within these variable populations, specialization on invertebrates or fish was a long-term trait of some individuals. SIA indicated that trophic position increased and diets shifted to a greater importance of littoral prey as pike grew in pike-only lakes, but not in lakes with other fish present. Trophic adaptability in northern pike is expressed at both the population level, where the trophic ecology is sensitive to differences in prey regimes, and at the organismal level, in the form of intrapopulation variation and individual specialization. Received: 1 July 1998 / Accepted: 3 February 1999  相似文献   

5.
A three-state, discrete-time Markov chain is used to model the dynamics of energy flow in a tri-trophic food web. The distribution of energy in the three trophic levels is related to the rates of flow between the trophic levels and calculated for the entire range of possible flow values. These distributions are then analysed for stability and used to test the idea that plants are resource-limited and herbivores are predation-limited. Low rates of death and decomposition, when coupled with low rates of herbivory and carnivory, tend to destabilize this food web. Food webs with higher rates of death and decomposition are relatively more stable regardless of rates of herbivory and carnivory. Plants are more prone to resource-limitation and herbivores are, in general, limited by their predators, which supports Hairston et al. (Am. Nat. 94 (1960) 421). The rate of decomposition often mediates the roles of top-down and bottom-up control of energy flow in the food web.  相似文献   

6.
Stable isotope analyses have emerged as an insightful tool for ecologists, with quantitative methods being developed to analyse data at the population, community and food web levels. In parallel, functional ecologists have developed metrics to quantify the multiple facets of functional diversity in a n-dimensional space based on functional traits. Here, we transferred and adapted metrics developed by functional ecologists into a set of four isotopic diversity metrics (isotopic divergence, dispersion, evenness and uniqueness) complementary to the existing metrics. Specifically, these new metrics are mathematically independent of the number of organisms analysed and account for the abundance of organisms. They can also be calculated with more than two stable isotopes. In addition, we also provide a procedure for calculating the levels of isotopic overlap (similarity and turnover) between two groups of organisms. These metrics have been implemented into new functions in R made freely available to users and we illustrated their application using stable isotope values from a freshwater fish community. Transferring the framework developed initially for measuring functional diversity to stable isotope ecology will allow more efficient assessments of changes in the multiple facets of isotopic diversity following anthropogenic disturbances.  相似文献   

7.
应用稳定同位素技术构建胶州湾食物网的连续营养谱   总被引:8,自引:0,他引:8  
麻秋云  韩东燕  刘贺  薛莹  纪毓鹏  任一平 《生态学报》2015,35(21):7207-7218
根据2011年春季和秋季在胶州湾进行的渔业资源综合调查,应用稳定同位素示踪技术,分析了胶州湾主要渔业生物的碳、氮稳定同位素比值(δ13C,δ15N),并计算其营养级,进而构建胶州湾食物网的连续营养谱。分析的生物种类包括浮游植物、浮游动物、大型无脊椎动物和鱼类,其生物量之和占总渔获量的95%。结果表明,胶州湾食物网的δ13C值范围是-25.63‰—-17.16‰,跨度为8.47‰,平均值为(-19.42±1.80)‰;δ15N值范围是4.15‰—14.11‰,跨度为9.96‰,平均值为(11.98±1.77)‰。胶州湾食物网中的主要生物种类可以划分为4个营养组群,即初级生产者、初级消费者、次级消费者以及顶级捕食者。δ15N值分析显示,胶州湾主要生物种类的营养级范围是1.10—4.03。与文献中基于胃含物分析计算的营养级相比较,37个种类中有29种的营养级分析结果基本一致(在0.5个营养级的误差范围之内)。因此,氮稳定同位素法是一种研究水生生态系统食物网营养位置的有效方法。其中,有8种鱼类的营养级与历史文献相比有所下降,分析方法的不同可能是原因之一,此外,这些鱼种摄食饵料生物营养级的下降也是导致其营养级降低的另一个主要原因。根据营养级计算的结果,构建了胶州湾食物网的连续营养谱,胶州湾食物网中,绝大多数生物种类都属于初级和中级肉食性种类。  相似文献   

8.
Stable carbon and nitrogen isotope ratios (δ13C and δ15N) are used to study the trophic structure of food web in the Yellow Sea and East China Sea ecosystem. The trophic continuum of pelagic food web from phytoplankton to top preyer was elementarily established, and a trophic structure diagram in the Yellow Sea and East China Sea was outlined in combination with carbon isotopic data of benthic organisms, which is basically consistent with and makes some improvements on the simplified Yellow Sea food web and the trophic structure diagram drawn based on the biomass of main resource population during 1985–1986. This result indicates that the stable isotope method is a potential useful means for further studying the complete marine food web trophic continuum from viruses to top predators and food web stability.  相似文献   

9.
The determination of trophic level for the biology in a marine ecosystem is very important as alteration of its structure and function may be reflected in the tro-phic level of component species. A change in trophic level indicates variation in an organism’s feeding bi-ology or in the pathway of energy flow from primary producers to the consumer. The gut content analysis is a traditional method for studying trophodynamics of food web in marine ecosystems. Species composition and amounts in al…  相似文献   

10.
Increasing interest in the marine trophic dynamics of Pacific salmon has been motivated by the recognition of their sensitivity to changing climate and to the competitive effects of hatchery fish on wild stocks. It has become more common to use stable isotopes to supplement traditional diet studies of salmon in the ocean; however, there have been no integrated syntheses of these data to determine whether stable isotope analyses support the existing conventional wisdom of feeding strategies of the Pacific salmon. We performed a meta-analysis of stable isotope data to examine the extent of trophic partitioning among five species of Pacific salmon during their marine lives. Pink, sockeye, and chum salmon showed very high overlap in resource use and there was no consistent evidence for chum relying on alternative food webs dominated by gelatinous zooplankton. δ15N showed that Chinook and coho salmon fed at trophic levels higher than the other three species. In addition, these two species were distinctly enriched in 13C, suggesting more extensive use of coastal food webs compared to the more depleted (pelagic) signatures of pink, sockeye, and chum salmon. This paper presents the first synthesis of stable isotope work on Pacific salmon and provides δ15N and δ13C values applicable to research on the fate of the marine derived nutrients these organisms transport to freshwater and riparian ecosystems.  相似文献   

11.
Communities of post‐dispersal granivores can shape the density and dispersion of exotic plants and invasive weeds, yet plant ecologists have a limited perception of the relative trophic linkages between a seed species and members of its granivore community. Dandelion seeds marked with Rabbit IgG were disseminated into replicated plots in the recipient habitat (South Dakota) and the native range (Czech Republic). Arthropods were collected in pitfall traps, and their guts were searched for the protein marker using enzyme‐linked immunosorbent assay (ELISA). Seed dishes were placed in each plot, and dandelion seed removal rates were measured. The entire experiment was repeated five times over the dandelion flowering period. Gut analysis revealed that approximately 22% of specimens tested positive for the seed marker. A more diverse granivore community had trophic linkages to seeds than has been previously realized under field conditions. This community included taxa such as isopods, millipedes, weevils, rove beetles, and caterpillars, in addition to the traditionally recognized ants, crickets, and carabid beetles. Rarefaction and Chao analysis estimated approximately 16 and 27 species in the granivore communities of the Czech Republic and South Dakota, respectively. Synthesis: Generalist granivore communities are diverse and polyphagous, and are clearly important as a form of biotic resistance to invasive and weedy plants. These granivore communities can be managed to limit population growth of these pests.  相似文献   

12.
The Seine estuary illustrates the alterations to estuaries due to human activities heavy releases of pollutants of various origins and significant morphological changes beginning in the middle of the 19th century. The intertidal mudflat surface has been seriously reduced (< 30km2) since the channels of the Seine River came under management. While the role of the Seine estuary in the dynamics of the eastern English Channel ecosystem is recognized as important, the biological characteristics of the estuary remained relatively unknown until the 1990s. Biological diversity was progressively impoverished from the polyhaline zone to the oligohaline zone. In spite of a heavily contaminated environment, the macrobenthic and planktonic fauna of the Seine estuary remains similar to those of other northeastern Atlantic estuaries. The fauna exhibit clear contrasts between areas with very high abundance and others with very low abundance. The pelagic fauna, especially the copepod Eurytemora affinisand the shrimp Palaemon longirostris, are more abundant in the Seine estuary than in other estuaries. Diversified and abundant, Abra alba-Pectinaria koreni and Macoma balthica benthic communities occur, respectively, in the outer and inner parts of the estuary. In subtidal flats, benthic fauna is especially poor in terms of specific richness, abundance and biomass. Paradoxically, considering the high abundance of prey, fish are particularly scarce. Two food webs have been identified. In the oligohaline zone, where turbidity is maximum, the food web is exclusively planktonic, due to dredging that prevented benthic fauna from settling. In the polyhaline zone, fish populations that feed particularly on benthic fauna benefit from low turbidity and high oxygen concentrations. So, in spite of heavy organic and metallic contamination and human activities, the Seine estuary remains a highly productive ecosystem, which provides a nursery for marine fish and feeding grounds for migratory birds. A global management plan appears to be necessary in order to guarantee that the Seine estuary continues to function as it currently does.  相似文献   

13.
Abstract We investigated the effects of biodiversity loss across trophic levels and across ecosystems (terrestrial to aquatic) on ecosystem function, in a detritus‐based tropical food web. Diversities of consumers (stream shredders) and resources (leaf litter) were experimentally manipulated by varying the number of species from 3 to 1, using different species combinations, and the effects on leaf breakdown rates were examined. In single‐species shredder treatments, leaf diversity loss affected breakdown rates, but the effect depended on the identity of the leaves remaining in the system: they increased when the most preferred leaf species remained, but decreased when this species was lost (leaf preferences were the same for all shredders). In multi‐species shredder assemblages, breakdown rates were lower than expected from single‐species treatments, suggesting an important role of interspecific competition. This pattern was also evident when oneleaf species was available but not with higher leaf diversity, suggesting that lowered leaf diversity promotes competitive interactions among shredders. The influence of diversity and identity of species across trophic levels and ecosystems on stream functioning points to complex interactions that may well be reflected in other types of ecosystem.  相似文献   

14.
When it comes to the investigation of key ecosystems in the world, we often omit salt from the ecological recipe. In fact, despite occupying almost half of the volume of inland waters and providing crucial services to humanity and nature, inland saline ecosystems are often overlooked in discussions regarding the preservation of global aquatic resources of our planet. As a result, our knowledge of the biological and geochemical dynamics shaping these environments remains incomplete and we are hesitant in framing effective protective strategies against the increasing natural and anthropogenic threats faced by such habitats. Hypersaline lakes, water bodies where the concentration of salt exceeds 35 g/l, occur mainly in arid and semiarid areas resulting from hydrological imbalances triggering the accumulation of salts over time. Often considered the ‘exotic siblings’ within the family of inland waters, these ecosystems host some of the most extremophile communities worldwide and provide essential habitats for waterbirds and many other organisms in already water-stressed regions. These systems are often highlighted as natural laboratories, ideal for addressing central ecological questions due to their relatively low complexity and simple food web structures. However, recent studies on the biogeochemical mechanisms framing hypersaline communities have challenged this archetype, arguing that newly discovered highly diverse communities are characterised by specific trophic interactions shaped by high levels of specialisation. The main goal of this review is to explore our current understanding of the ecological dynamics of hypersaline ecosystems by addressing four main research questions: (i) why are hypersaline lakes unique from a biological and geochemical perspective; (ii) which biota inhabit these ecosystems and how have they adapted to the high salt conditions; (iii) how do we protect biodiversity from increasing natural and anthropogenic threats; and (iv) which scientific tools will help us preserve hypersaline ecosystems in the future? First, we focus on the ecological characterisation of hypersaline ecosystems, illustrate hydrogeochemical dynamics regulating such environments, and outline key ecoregions supporting hypersaline systems across the globe. Second, we depict the diversity and functional aspects of key taxa found in hypersaline lakes, from microorganisms to plants, invertebrates, waterbirds and upper trophic levels. Next, we describe ecosystem services and discuss possible conservation guidelines. Finally, we outline how cutting-edge technologies can provide new insights into the study of hypersaline ecology. Overall, this review sheds further light onto these understudied ecosystems, largely unrecognised as important sources of unique biological and functional diversity. We provide perspectives for key future research avenues, and advocate that the conservation of hypersaline lakes should not be taken with ‘a grain of salt’.  相似文献   

15.
The significance of cannibalism in the diet of juvenile pond-cultured blue swimmer crabs (Portunus pelagicus (L.)) was investigated using dual stable isotope analysis of carbon and nitrogen. In a laboratory feeding experiment, δ15N demonstrated a constant trophic shift (Δδ15N ≈+ 1.6‰), and therefore seemed to be a reliable indicator for assessing trophic position for P. pelagicus. This agrees with previously reported trends. Difference in growth rate did not seem to influence δ15N values. In contrast, δ13C did not display consistent shifts between trophic levels (range of Δδ13C: + 1 to + 1.7‰). The results from the pond experiment showed that larger individuals had a more enriched δ15N than smaller individuals, which, when compared to the results from the laboratory experiment, indicates that larger individuals were at a higher trophic level. This is most likely due to cannibalism prevailing in the pond rather than a direct result of faster growth rate. Cannibalistic behaviour might further increase growth, resulting in the observed positive correlation between size and δ15N.  相似文献   

16.
DNA-based gut content analysis has become an important tool for unravelling feeding interactions in invertebrate communities under natural conditions. It usually implies killing of the consumer and extracting the DNA from its food, using either the whole animal or its dissected gut. This post-mortem approach, however, is not suitable for investigating the diet of rare or protected species and also prohibits tracking individual dietary preferences as each consumer can provide trophic information only once. Moreover, removing large numbers of consumers from a habitat for analysis might critically change population densities and affect species interactions. Here, we present DNA-based analysis of invertebrate regurgitates, a novel approach to overcome these limitations. Conducting feeding experiments where adult Poecilus cupreus (Coleoptera: Carabidae) were fed with larvae of Amphimallon solstitiale (Coleoptera: Scarabaeidae), we show that detection success in regurgitates compared to samples prepared from whole beetles was similar or significantly enhanced for small/medium and large prey DNA fragments, respectively. Prey DNA detection success remained high in regurgitates stored in ethanol for 21 months at room temperature prior to DNA extraction. We conclude that in those invertebrates where regurgitates can be obtained, examination of food DNA in regurgitates offers many advantages over conventional post-mortem gut content analysis.  相似文献   

17.
Omnivorous fish, such as the central stoneroller minnow (Campostoma anomalum(Rafinesque)), and crayfish often play important roles in the trophic dynamics of streams. The trophic role of these two omnivores has not been compared within a system even though they both consume algae, detritus and invertebrates and often co-occur in streams in the Midwestern United States. Natural abundance of 15N and 13C isotopes and a whole stream 15N-labeled ammonium chloride release were used to compare the trophic ecology of the central stoneroller minnow (Campostoma anomalum (Rafinesque)) and two species of crayfish (Orconectes neglectus (Faxon) and Orconectes nais (Faxon)) in a tallgrass prairie stream. The 15N and 13C values of Orconectes spp. were more similar to coarse benthic organic matter (CBOM) and filamentous green algae than to invertebrates, fine benthic organic matter (FBOM), and periphyton. Values for 15N and 13C in C. anomalum were more similar to grazer and collector invertebrates and filamentous green algae than to FBOM and periphyton. Results from a 15N tracer release also indicated a portion of algae and/or invertebrates were a component of nitrogen assimilated in Orconectes spp. and C. anomalum diets. Gut contents of C. anomalum were also analyzed. In contrast to stable isotope data, amorphous detritus was a significant component of C. anomalum guts, followed by diatoms and filamentous green algae. A significant percentage of invertebrate material was found in C. anomalum guts sampled in the spring. Experiments were conducted in artificial streams to determine if Orconectes spp. and C. anomalum could reduce epilithic algal biomass in small streams. Algal biomass on clay tile substrata was decreased relative to controls in artificial stream channels containing O. neglectus (3.4 fold, p=0.0002), C. anomalum (2.1 fold, p=0.0012), and both species combined (3.0 fold, p=0.0003). Results indicate that Orconectes spp. are functioning more as algal and detrital processors than as predators in Kings Creek. Isotope and gut content data show that C. anomalum includes invertebrates as well as algae and detritus in its diet. Both species have the potential to affect algal biomass and are important omnivores in the stream food web.  相似文献   

18.
River discharge has long been recognized as one of the factors that contributes to the high productivity of estuaries. Although there is little evidence that river inputs of terrestrial carbon make a direct contribution to coastal food webs, such exported nutrients may stimulate in situ production in estuaries and thus enhance the survivorship and growth of fish and crustaceans in these systems. Furthermore, fluctuations in salinity and turbidity may influence the extent of available habitat for fish and crustaceans and therefore their distribution and/or catchability. Despite these potential links between flow and the secondary production of estuaries and coastal waters, there is still a common perception that ‘water going to sea is wasted’ and a continuing trend to regulate the flow of rivers. We review the evidence for links between river flow and the productivity of estuarine/coastal fisheries, drawing on a case study of the Logan River in southeast Queensland, and explore the potential mechanisms for these linkages. Our research, and that of others, confirms that high river discharge can have a strong positive effect on the production of commercial and recreational coastal fisheries. It also shows that the seasonal pattern of flow is equally, if not more important, than the magnitude of flow. River regulation is likely to have a dramatic effect on the production of coastal fisheries and, given the current pressures for water resource development, this is an important avenue for future research and evaluation.  相似文献   

19.
A dual isotope approach was used to assess the relative importance of terrestrial vegetation detritus and other primary producers in the trophic web of Flamengo Sound (Ubatuba, SP), SE Brazil, surrounded by the Atlantic Rain Forest. Primary producers showed distinct C signatures and the observed values suggest that little terrestrial or bulk sediment organic matter enter the food web of the sound. Suspended particulate organic matter (POM, supports the bulk of the consumers, with some contribution by macroalgae . Consumers C values ranged from −17.4 to . At least three trophic levels were detectable in the food web. The N value of POM was , while that of sediment and detritus was . The N values of suspension feeding benthic invertebrates were 8.2–, deposit feeders 8.3–, and carnivores 10.7–. Values for fishes were for detritivore, 11.4– for benthic feeders, 12.4– for zooplanktivores, and for piscivores/benthic invertebrate feeders. Squid mean value was . There is a reasonable agreement between feeding habits information from the literature and N values from this study. In the sound, the first and second trophic steps seem to be about 1– higher than those of similar organisms studied in temperate waters and this may reflect an input of allochtonous anthropogenic nitrogen enriched in 15N from human activities.  相似文献   

20.
We developed a trophic dynamic model of key populations and processes in the New River, West Virginia, to identify the mechanisms most responsible for maintaining food web structure. Key populations were represented by thirteen model components and were aquatic insects; age-1 and age-2 crayfish (three species); age-1 and age-2 hellgrammites (Corydalus cornutus larvae); non-game fishes; age-0, age-1, and adult smallmouth bass (Micropterus dolomieu); age-0, age-1, and adult rock bass (Ambloplites rupestris); and age-0, age-1 to age-3, and adult flathead catfish (Pylodictis olivaris). In this system, crayfish and hellgrammites are harvested to provide bait for the recreational fishery that extensively exploits the three predatory fish species. Predation and intraspecific regulation were represented with nonlinear algorithms, and linear terms represented fishery harvests. Interspecific competition among components occurred through predation on shared prey. Error analysis of the model suggested that predation was the most important mechanism in maintaining system structure (the disposition of biomass among system components). Further, the trophic relation between each component and its prey accounted for 34–64% of the variability in food web structure, whereas predation on each component explained 1–24% of food web structure variability. Therefore, so-called ‘bottom-up’ effects were more influential than ‘top-down’ effects. Interspecific competition and intraspecific regulation had secondary roles in maintaining New River food web structure, although intraspecific regulation was most important to aquatic insects, which were not predatory in our model. Both forms of competition are probably tempered by extensive predation and exploitation in the New River system. Exploitation was a secondary structuring agent to adult smallmouth bass, which experience a high rate of harvest in the New River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号