首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 50% of the SV40 DNA in the process of replication (sv40(ri) dna) completed replication in lysates of infected BSC-1 cells by conversion to covalently closed, superhelical SV40 DNA (SV40(I) DNA). Fractionation of the lysate into nuclear and cytoplasmic components blocked 99% of the synthesis of SV40(I) DNA in the purified nuclei. The reconstituted system, made by adding back the cytoplasmic fraction before incubation at 30 degrees, completely restored the in vitro level of SV40(I) DNA synthesis. Preliminary characterization of the activity found in the cytoplasmic fraction suggested it was a soluble, heat-labile protein (or proteins) with a minimum molecular weight of about 30,000 and an active sulfhydryl group. The activity was present in both infected and uninfected monkey cells, and at a lower level in mouse, hamster, and human cell lines. Neither serum starvation nor cycloheximide treatment of cells diminished the activity in the cytoplasmic fraction. Purified cytoplasmic DNA polymerase from KB cells did not substitute for the cytoplasmic fraction which was required for elongation of newly synthesized DNA strands. In the absence of the cytoplasmic fraction, conversion of 4 S DNA into longer strands was inhibited, and SV40(RI) DNA appeared to be broken specifically at the replication forks.  相似文献   

2.
H Ariga 《Nucleic acids research》1986,14(23):9457-9470
We have previously developed simian virus 40 (SV40) DNA replication system in vitro (Ariga and Sugano, J. Virol. 48, 481, 1983). This system is composed of human HeLa or mouse FM3A nuclear extract and cytoplasmic extract of SV40 infected CosI cells. Here FM3A nuclear extract was fractionated by DEAE Sephacel and single-stranded DNA cellulose chromatography into three components required for accurate in vitro SV40 DNA replication. One fraction (A fraction) contained DNA polymerase-primase, and the second component (B fraction) contained DNA topoisomerase. Third component was further purified to near homogenuity using DEAE-Sephacel, single-stranded DNA cellulose, and glycerol gradient centrifugation. The purified protein (named factor I) bound to the origin containing fragment of SV40 DNA. The factor I enhanced the initiation of SV40 DNA replication catalyzed by SV40 infected CosI cytoplasm alone. When all four fractions consisting of A, B fractions, factor I, and SV40 infected CosI cytoplasm were mixed together, the system was reconstituted, meaning that initiation and subsequent elongation were completed to generate the full sized daughter molecules.  相似文献   

3.
In vitro initiation of DNA replication in simian virus 40 chromosomes   总被引:15,自引:0,他引:15  
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta.  相似文献   

4.
The distribution of preformed ("old") histone octamers between the two arms of DNA replication forks was analyzed in simian virus 40(SV40)-infected cells following treatment with cycloheximide to prevent nucleosome assembly from nascent histones. Viral chromatin synthesized in the presence of cycloheximide was shown to be deficient in nucleosomes. Replicating SV40 DNA (wild-type 800 and capsid assembly mutant, tsB11) was radiolabeled in either intact cells or nuclear extracts supplemented with cytosol. Nascent nucleosomal monomers were then released by extensive digestion of isolated nuclei, nuclear extracts or isolated viral chromosomes with micrococcal nuclease. The labeled nucleosomal DNA was purified and found to hybridize to both strands of SV40 DNA restriction fragments taken from each side of the origin of DNA replication, whereas Okazaki fragments hybridized only to the strand representing the retrograde DNA template. In addition, isolated, replicating SV40 chromosomes were digested with two strand-specific exonucleases that excised nascent DNA from either the forward or the retrograde side of replication forks. Pretreatment of cells with cycloheximide did not result in an excess of prenucleosomal DNA on either side of replication forks, but did increase the amount of internucleosomal DNA. These data are consistent with a dispersive model for nucleosome segregation in which "old" histone octamers are distributed to both arms of DNA replication forks.  相似文献   

5.
The intranuclear localization of SV40 T-antigen (T-Ag) and the cellular protein p53 was studied in SV40 abortively infected baby mouse kidney cells using two complementary methods of ultrastructural immunocytochemistry in combination with preferential staining of nuclear RNP components and electron microscope autoradiography. Both proteins were revealed in association with peri- and interchromatin RNP fibrils containing the newly synthesized hnRNA. In addition, T-Ag and p53 remained bound, at least in part, to the residual internal nuclear matrix following nuclease and salt extractions of infected cells. The localization of T-Ag was different in SV40 lytically infected monkey kidney cells since, in addition to hnRNP fibrils, the viral protein was also associated with cellular chromatin. However, when lytic infection was performed in conditions of blocked viral DNA replication, T-Ag was no longer associated with the cellular chromatin but remained bound to the hnRNP fibrils. We conclude that the transforming and lytic functions of T-Ag can be distinguished by different subnuclear distributions. The significance of the association of T-Ag and p53 with hnRNP fibrils and the internal nuclear matrix is discussed in relation to the role of these structures in the control of cellular mRNA biogenesis.  相似文献   

6.
Structural topography of simian virus 40 DNA replication.   总被引:8,自引:7,他引:1       下载免费PDF全文
Applying an in situ cell fractionation procedure, we analyzed structural systems of the cell nucleus for the presence of mature and replicating simian virus 40 (SV40) DNA. Replicating SV40 DNA intermediates were tightly and quantitatively associated with the nuclear matrix, indicating that elongation processes of SV40 DNA replication proceed at this structure. Isolated nuclei as well as nuclear matrices were able to continue SV40 DNA elongation under replication conditions in situ, arguing for a coordinated and functional association of SV40 DNA and large T molecules at nuclear structures. SV40 DNA replication also was terminated at the nuclear matrix. While the bulk of newly synthesized, mature SV40 DNA molecules then remained at this structure, some left the nuclear matrix and accumulated at the chromatin.  相似文献   

7.
Simian virus 40 (SV40) nucleoprotein complexes were prepared from lytically infected cells and used as primer-templates for DNA replication in protein extracts from Xenopus eggs. We found that nucleoprotein containing replicating SV40 DNA served as primer-template while nucleoprotein with nonreplicating SV40 DNA was ineffective. In vitro DNA synthesis begins with short DNA fragments ("Okazaki fragments") which are, in later steps, joined to give unit length SV40 DNA strands, suggesting that in vivo initiated rounds of replication are completed in vitro in the Xenopus system. This conclusion is supported by a restriction enzyme analysis showing that in vitro DNA synthesis occurs in fragments distal to the SV40 origin of replication. Our studies indicate that SV40 DNA replication in Xenopus extracts can be used an an experimental system to study the biochemistry of replicative DNA chain elongation in vitro.  相似文献   

8.
Nuclear accumulation of HMG1 protein is correlated to DNA synthesis   总被引:2,自引:0,他引:2  
The subcellular localization of HMG1 protein was studied by immunoelectron microscopy during growth of CV1 cells in culture and in confluent CV1 cells subsequently lytically infected with SV40. HMG1 was always detected in the cytoplasm of both non-infected and infected cells. On the other hand, this protein displayed a nuclear localization only in those cells active in cellular and/or viral DNA replication, that is, in actively dividing non-infected cells and in confluent cells following SV40 infection. The combination of electron microscope immunocytochemistry and autoradiography revealed that during SV40 lytic infection, HMG1 accumulates at sites of active viral DNA replication. Since HMG1 is a single-stranded DNA binding protein and acts in vitro as a physiological nucleosome assembly factor, we suggest that its presence in the nucleus is related to its requirement in the DNA replication process.  相似文献   

9.
We recently described a soluble cell-free system derived from monkey cells that is capable of replicating exogenous plasmid DNA molecules containing the simian virus 40 (SV40) origin of replication (J.J. Li, and T.J. Kelly, Proc. Natl. Acad. Sci. U.S.A. 81:6973-6977, 1984). Replication in the system is completely dependent upon the addition of the SV40 large T antigen. In this report we describe additional properties of the in vitro replication reaction. Extracts prepared from cells of several nonsimian species were tested for the ability to support origin-dependent replication in the presence of T antigen. The activities of extracts derived from human cell lines HeLa and 293 were approximately the same as those of monkey cell extracts. Chinese hamster ovary cell extracts also supported SV40 DNA replication in vitro, but the extent of replication was approximately 1% of that observed with human or monkey cell extracts. No replication activity was detectable in extracts derived from BALB/3T3 mouse cells. The ability of these extracts to support replication in vitro closely parallels the ability of the same cells to support replication in vivo. We also examined the ability of various DNA molecules containing sequences homologous to the SV40 origin to serve as templates in the cell-free system. Plasmids containing the origins of human papovaviruses BKV and JCV replicated with an efficiency 10 to 20% of that of plasmids containing the SV40 origin. Plasmids containing Alu repeat sequences (BLUR8) did not support detectable DNA replication in vitro. Circular DNA molecules were found to be the best templates for DNA replication in the cell-free system; however, linear DNA molecules containing the SV40 origin also replicated to a significant extent (10 to 20% of circular molecules). Finally, electron microscopy of replication intermediates demonstrated that the initiation of DNA synthesis in vivo takes place at a unique site corresponding to the in vivo origin and that replication is bidirectional. These findings provide further evidence that replication in the cell-free system faithfully mimics SV40 DNA replication in vivo.  相似文献   

10.
Autographica californica multiple nuclear polyhedrosis virus (AcMNPV) has been shown to encode many of the enzymes involved in the replication of its own DNA. Although the AcMNPV genome contains multiple sets of reiterated sequences that are thought to function as origins of DNA replication, no initiator protein has yet been identified in the set of viral replication enzymes. In this study, the ability of a heterologous origin initiator system to promote DNA replication in AcMNPV-infected cells was examined. A recombinant AcMNPV that expressed the simian virus 40 (SV40) large T antigen was surprisingly found to induce the efficient replication of a transfected plasmid containing an SV40 origin. This replication was subsequently found to involve three essential components: (i) T antigen, since replication of SV40 origin-containing plasmids was not induced by wild-type AcMNPV which did not express this protein; (ii) an intact SV40 core origin, since deletion of specific functional motifs within the origin resulted in a loss of replicative abilities; and (iii) one or more AcMNPV-encoded proteins, since viral superinfection was required for plasmid amplification. Characterization of the replicated DNA revealed that it existed as a high-molecular-weight concatemer and underwent significant levels of homologous recombination between inverted repeat sequences. These properties were consistent with an AcMNPV-directed mode of DNA synthesis rather than that of SV40 and suggested that T antigen-SV40 origin complexes may be capable of initiating DNA replication reactions that can be completed by AcMNPV-encoded enzymes.  相似文献   

11.
C Jones  R T Su 《Nucleic acids research》1982,10(18):5517-5532
The nuclear matrix prepared from normal, simian virus 40 (SV40)-infected, and SV40-transformed cells contained DNA polymerase activities. Approximately 12% of the total DNA polymerase activities in isolated nuclei remained with the nuclear matrix. alpha-polymerase was the major matrix DNA polymerase activity as judged by sensitivity to various inhibitors: aphidicolin, dideoxy-TTP, and N-ethylmaleimide. Approximately 2-4 fold higher DNA polymerase activity was detected in matrices obtained from lytically infected and virus-transformed cells than that found in normal cells. In lytically infected cells, 30-50% of the matrix-bound DNA polymerase activity solubilized by sonication co-sedimented with majority of the matrix T-antigen, and was co-precipitated with anti-T sera. The results suggest that alpha-polymerase and viral T-antigen may form a functional complex in the matrix.  相似文献   

12.
M Hartl  T Willnow    E Fanning 《Journal of virology》1990,64(6):2884-2894
Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA.  相似文献   

13.
14.
The stability of an Epstein-Barr virus (EBV)-simian virus 40 (SV40) hybrid shuttle vector, the p205-GTI plasmid, was analyzed in human cells during EBV- or SV40-type replication mode. When the p205-GTI plasmid was maintained as an episomal EBV vector in the human 293 cell line, no rearrangement was detected. To induce the SV40 replication mode, cells containing the episomal p205-GTI plasmid were either transfected with vectors carrying the T antigen gene or infected with SV40. Surprisingly, we observed both production and amplification of different classes of recombinant molecules. Particular types of modifications were found in most of the recombinants. The most striking rearrangement was a duplication of the promoter and enhancer regions of SV40 which was inserted in the thymidine kinase (TK) promoter. This recombination process involved a few bases of homology, and one of the recombination junctions implicated the GC boxes which constitute the essential components of the TK and SV40 early promoters. Our results suggest that a combination of a low level of base homology and a specific DNA sequence function (promoter and enhancer sites) leads to a very high level of recombinational activity during T-antigen-dependent plasmid replication.  相似文献   

15.
16.
Primate's p53 inhibits SV40 DNA replication in vitro   总被引:1,自引:0,他引:1  
Previous reports indicated that rodent p53 inhibits simian virus 40 (SV40) DNA replication in vitro as well as in vivo while that from primate cells does not (1-4). Here we report the evidence that p53 of primate origin also inhibits SV40 DNA replication in vitro. p53-SV40 large tumor antigen (T antigen) complex purified from SV40 infected COS-1 cells had little replication activity and inhibited SV40 DNA replication in vitro. These results suggest that inhibition of SV40 DNA replication by p53 should be regarded as general property of the protein and does not determine the mode of species specific replication of SV40 DNA.  相似文献   

17.
Protein blotting: principles and applications   总被引:70,自引:0,他引:70  
Extensive studies on the DNA tumor virus Simian Virus 40 (SV40) have provided a wealth of information regarding the genome organization, regulation of viral gene expression, and the mechanism of DNA replication. SV40 can grow lytically in permissive monkey cells or the viral DNA can integrate into the host genome of nonpermissive rodent cells causing morphological transformation. The viral DNA exists as a minichromosome within the nuclei of lytically infected cells and, as a consequence of DNA replication, there is a significant amplification of the viral genome during infection. These properties suggested that SV40 could be developed as a transducing vector to introduce exogenous DNA into mammalian cells and to express this foreign DNA during the SV40 infectious cycle. In this article the properties of SV40 virus vectors and SV40 hybrid plasmid vectors are described and contrasted.  相似文献   

18.
The cell cycle is driven by the sequential activation of a family of cyclin-dependent kinases (CDK) in association with cyclins. In mammalian cells the timing of activation of cyclin A-associated kinase activity coincides with the onset of DNA synthesis in S-phase. Using in vitro replication of SV40 origin-containing DNA as a model system, we have analyzed the proteins associated with DNA during initiation of DNA replication in S-phase cell extracts. This analysis reveals that, in addition to replication initiation proteins, cyclin A and cdk2 are also specifically associated with DNA. The association of cyclin A and cdk2 with DNA during initiation is cell cycle regulated and occurs specifically in the presence of SV40 origin-containing plasmid and SV40 T antigen (the viral replication initiator protein). The interactions among proteins involved in initiation play an important role in DNA replication. We therefore investigated the ability of cyclin A and cdk2 to associate with replication initiation proteins. Under replication initiation conditions, cyclin A and cdk2 from S-phase extracts specifically associate with SV40 T antigen. Further, the interaction of cyclin A-cdk2 with SV40 T antigen is mediated via cyclin A, and purified recombinant cyclin A associates directly with SV40 T antigen. Taken together, our results suggest that cyclin A and cdk2 are components of the SV40 replication initiation complex, and that protein-protein interactions between cyclin A-cdk2 and T antigen may facilitate the association of cyclin A-cdk2 with the complex. Received: 30 July 1996; in revised form: 25 September 1996 / Accepted: 8 October 1996  相似文献   

19.
Bizelesin, a bifunctional DNA minor groove alkylating agent, inhibits both cellular and viral (SV40) DNA replication in whole cells. Bizelesin inhibition of SV40 DNA replication was analyzed in SV40-infected cells, using two-dimensional (2D) neutral agarose gel electrophoresis, and in a cell-free SV40 DNA replication assay. Within 1 h of bizelesin addition to infected cells, a similar rapid decrease in both the level of SV40 replication intermediates and replication activity was observed, indicating inhibition of initiation of SV40 DNA replication. However, prolonged bizelesin treatment (>/=2 h) was associated with a reduced extent of elongation of SV40 replicons, as well as the appearance on 2D gels of intense spots, suggestive of replication pause sites. Inhibition of elongation and induction of replication pause sites may result from the formation of bizelesin covalent bonds on replicating SV40 molecules. The level of in vitro replication of SV40 DNA also was reduced when extracts from bizelesin-treated HeLa cells were used. This effect was not dependent upon the formation of bizelesin covalent bonds with the template DNA. Mixing experiments, using extracts from control and bizelesin-treated cells, indicated that reduced DNA replication competence was due to the presence of a trans-acting DNA replication inhibitor, rather than to decreased levels or inactivation of essential replication factor(s).  相似文献   

20.
Localization of SV40 genes within supercoiled loop domains   总被引:18,自引:4,他引:14       下载免费PDF全文
Recent studies indicate that eukaryotic DNA is organized into supercoiled loop domains. These loops appear to be anchored at their bases to an insoluble nuclear skeleton or matrix. Most of the DNA in the loops can be released from the matrix by nuclease digestion; the residual DNA remaining with the nuclear matrix represents sequences at the base of the loops, and possibly other sequences which are intimately associated with the nuclear matrix for other reasons. Using a quantitative application of the Southern blotting technique, we have found this residual DNA from SV40 infected 3T3 cells to be enriched in SV40 sequences, indicating that they reside near matrix-DNA attachment points. An enrichment of 3-7 fold relative to total cellular DNA, was found in each of three different lines of SV40 infected 3T3 cells. Control experiments with globin genes showed no such enrichment in this residual matrix DNA. This sequence specificity suggests that the spatial organization of DNA sequences within loops may be related to the functionality of these sequences within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号