首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Using primary embryonic Drosophila cell cultures, we have investigated the assembly of transcellular microtubule bundles in epidermal tendon cells. Muscles attach to the tendon cells of previously undescribed epidermal balls that form shortly after culture initiation. Basal capture of microtubule ends in cultured tendon cells is confined to discrete sites that occupy a relatively small proportion of the basal cell surface. These capturing sites are associated with hemiadherens junctions that link the ends of muscle cells to tendon cell bases. In vivo, muscle attachment and microtubule capture occur across the entire cell base. The cultured tendon cells reveal that the basal ends of their microtubules can be precisely targeted to small, pre-existing, structurally well-defined cortical capturing sites. However, a search and capture targeting procedure, such as that undertaken by kinetochore microtubules, cannot fully account for the precision of microtubule capture and positioning in tendon cells. We propose that cross-linkage of microtubules is also required to zip them into apicobasally oriented alignment, progressing from captured basal plus ends to apical minus ends. This involves repositioning of apical minus ends before they become anchored to an apical set of hemiadherens junctions. The proposal is consistent with our finding that hemiadherens junctions assemble at tendon cell bases before they do so at cell apices in both cultures and embryos. It is argued that control of microtubule positioning in the challenging spatial situations found in vitro involves the same procedures as those that operate in vivo.  相似文献   

2.
The mode of association of microtubules (MTs) with the plasmalemma in epidermal tendon cells of the river crab, Potamon dehaani was studied by thin-section electron microscopy. In the leg muscle, the tendon cells connect striated muscle cells with the cuticle, forming specialized junctions at both ends. At the muscle-tendon cell junction, the apposed plasmalemmas are interdigitated in a zig-zag pattern separated by a uniform space of about 50 nm, where the basal lamina is shared by two cells. At the tendon cell-cuticle junction, the plasmalemma of the tendon cell forms many conical invaginations, into which dense fibrous material extends from the cuticle. Inside the tendon cell, numerous microtubules run parallel to the direction of tension transmission and are arranged into parallel bundles of various sizes. Within such bundles, fine filamentous structures cross-link adjacent MTs. MTs span the entire length of the cell and attach at their both ends to the junctional domains of the plasmalemma. The junctional plasmalemma is characterized by formation of an electron-dense undercoat, through which MTs are connected with the plasmalemma proper. The ultrastructural features of MT association with the plasmalemma are basically the same at both junctions. At the junctions, MTs usually terminate with free ends and are linked laterally to the plasmalemmal undercoat with fine filamentous structures. These observations emphasize the role of the plasmalemmal undercoat as a device of the attachment of MTs to the plasmalemma.  相似文献   

3.
Tendon cells are specialized cells of the insect epidermis that connect basally attached muscle tips to the cuticle on their apical surface via prominent arrays of microtubules. Tendon cells of Drosophila have become a useful genetic model system to address questions with relevance to cell and developmental biology. Here, we use light, confocal, and electron microscopy to present a refined model of the subcellular organization of tendon cells. We show that prominent arrays of F-actin exist in tendon cells that fully overlap with the microtubule arrays, and that type II myosin accumulates in the same area. The F-actin arrays in tendon cells seem to represent a new kind of actin structure, clearly distinct from stress fibers. They are highly resistant to F-actin–destabilizing drugs, to the application of myosin blockers, and to loss of integrin, Rho1, or mechanical force. They seem to represent an important architectural element of tendon cells, because they maintain a connection between apical and basal surfaces even when microtubule arrays of tendon cells are dysfunctional. Features reported here and elsewhere for tendon cells are reminiscent of the structural and molecular features of support cells in the inner ear of vertebrates, and they might have potential translational value.  相似文献   

4.
During development Caenorhabditis elegans changes from an embryo that is relatively spherical in shape to a long thin worm. This paper provides evidence that the elongation of the body is caused by the outermost layer of embryonic cells, the hypodermis, squeezing the embryo circumferentially. The hypodermal cells surround the embryo and are linked together by cellular junctions. Numerous circumferentially oriented bundles of microfilaments are present at the outer surfaces of the hypodermal cells as the embryo elongates. Elongation is associated with an apparent pressure on the internal cells of the embryo, and cytochalasin D reversibly inhibits both elongation and the increase in pressure. Circumferentially oriented microtubules also are associated with the outer membranes of the hypodermal cells during elongation. Experiments with the microtubule inhibitors colcemid, griseofulvin, and nocodazole suggest that the microtubules function to distribute across the membrane stresses resulting from microfilament contraction, such that the embryo decreases in circumference uniformly during elongation. While the cytoskeletal organization of the hypodermal cells appears to determine the shape of the embryo during elongation, an extracellular cuticle appears to maintain the body shape after elongation.  相似文献   

5.
To understand the role of microtubules and microfilaments in regulating endothelial monolayer integrity and repair, and since microtubules and microfilaments show some co-alignment in endothelial cells, we tested the hypothesis that microtubules organize microfilament distribution. Disruption of microtubules with colchicine in resting confluent aortic endothelial monolayers resulted in disruption of microfilament distribution with a loss of dense peripheral bands, an increase in actin microfilament bundles, and an associated increase of focal adhesion proteins at the periphery of the cells. However, when microfilaments were disrupted with cytochalasin B, microtubule distribution did not change. During the early stages of wound repair of aortic endothelial monolayers, microtubules and microfilaments undergo a sequential series of changes in distribution prior to cell migration. They are initially distributed randomly relative to the wound edge, then align parallel to the wound edge and then elongate perpendicular to the wound edge. When microtubules in wounded cultures were disrupted, dense peripheral bands and lamellipodia formation were lost with increases in central stress fibers. However, following microfilament disruption, microtubule redistribution was not disrupted and the microtubules elongated perpendicular to the wound edge similar to non-treated cultures. Microtubules may organize independently of microfilaments while microfilaments require microtubules to maintain normal organization in confluent and repairing aortic endothelial monolayers.  相似文献   

6.
The fine structure of the myo-cuticular junction in an acarid mite, Caloglyphus mycophagus, is described. The muscle fibres are attached to the cuticle via flattened, much invaginated, epidermal cells. Unlike the situation described for other arthropods, the stress across these epidermal cells does not appear to be transmitted by microtubules but rather by desmosome-like structures which form intraepidermal cell bridges where invaginations from the outer and inner surfaces of the epidermal cells lie close together. The muscles are attached to the inner surface of this complex desmosome and the outer surface is linked to the cuticle by extracellular fibrils.  相似文献   

7.
Summary The structure and organization of the cytoskeleton in the vegetative cell of germinated pollen grains and pollen tubes ofPyrus communis was examined at the ultrastructural level via chemical fixation and freeze substitution, and at the light microscopic level with the aid of immunofluorescence of tubulin and rhodamine-phalloidin.Results indicate that cortical microtubules and microfilaments, together with the plasma membrane, form a structurally integrated cytoskeletal complex. Axially aligned microtubules are present in cortical and cytoplasmic regions of the pollen grain portion of the cell and the distal region of the pollen tube portion. Cytoplasmic bundles of microfilaments are found in association with elements of endoplasmic reticulum and vacuoles. Axially aligned microfilaments are also found in this region, associated with and independent of the microtubules. Microtubules are lacking in the subapical region where short, axially aligned microfilaments are found in the cell cortex. In the apical region, which also lacks microtubules, a 3-dimensional network of short microfilaments occurs. Microfilaments, but not microtubules, appear to be associated with the vegetative nucleus.  相似文献   

8.
There are two microtubule systems in the posterior silk gland cells. One is a radial microtubule system in which the microtubules run radially from the basal to the apical cytoplasm and in which fibroin globules (secretory granules of fibroin) and mitochondria are arranged along these microtubules, thus composing a "canal system" which is assumed to be responsible for the intracellular transport of fibroin globules. The other is a circular microtubule system in the apical cytoplasm which is composed of bundles of microtubules and microfilaments running in a circular arrangement around the glandular lumen at an interval of approximately 4 mum at the end of the fifth instar. This system is presumably concerned with secretion and/or intraluminal transport of fibroin.  相似文献   

9.
A pollen grain in Tradescantia reflexa consists of two cells, the generative and the vegetative cells, the generative cell being surrounded completely by the vegetative cell. The generative cell has many lobes or surface invaginations. A complicated network of rER extends throughout the entire vegetative cytoplasm, forming a system of channels made up by the cisternae of rER. Lipid granules are surrounded by ER. Branches of the rER enter all the concavities of the invaginations and attach to the plasma membranes at the bottoms of the invaginations. In the generative cell, no reserve substances, such as lipids, are seen. There is little ER, mitochondria are few in number, and Golgi bodies seem to be less active within this type of cell. Bundles of microtubules run parallel to the long axis of the generative cell. No microtubules or microfilaments can be detected at or near the bottoms of concavities, either on the generative or the vegetative side. ER is the sole cell element that bears a positional relationship to the invaginations. It appears, therefore, that rER is intimately involved in the shaping of the invaginations. This is the first report that a cell element other than microtubules and microfilaments can be involved in the formation of the outer shape of a cell. The possibility that materials from decomposed lipid droplets are transported through the rER to the generative cell is also discussed.  相似文献   

10.
The ultrastructure of the muscle-shell attachment was investigated in the land pulmonate snails Helix aspersa, Anguispira altemata, in the freshwater pulmonate Laevipex sp., and in the freshwater prosobranch Pomacea paludosa. In all cases, a collagenous intercellular matrix and a specialized epithelium (tendon cells) intervene between the columellar muscle and the shell. These tendon cells are characterized by hemidesmosomes at both apical and basal ends, connected by thick bundles of microfilaments. The tendon cells do not insert into the shell directly by microvilli, as formerly thought, but by an extensive network of extracellular organic fibers.  相似文献   

11.
Hook decoration with pig brain tubulin was used to assess the polarity of microtubules which mainly have 15 protofilaments in the transcellular bundles of late pupal Drosophila wing epidermal cells. The microtubules make end-on contact with cell surfaces. Most microtubules in each bundle exhibited a uniform polarity. They were oriented with their minus ends associated with their hemidesmosomal anchorage points at the apical cuticle-secreting surfaces of the cells. Plus ends were directed towards, and were sometimes connected to, basal attachment desmosomes at the opposite ends of the cells. The orientation of microtubules at cell apices, with minus ends directed towards the cell surface, is opposite to the polarity anticipated for microtubules which have elongated centrifugally from centrosomes. It is consistent, however, with evidence that microtubule assembly is nucleated by plasma membrane-associated sites at the apical surfaces of the cells (Mogensen, M. M., and J. B. Tucker. 1987. J. Cell Sci. 88:95-107) after these cells have lost their centriole-containing, centrosomal, microtubule-organizing centers (Tucker, J. B., M. J. Milner, D. A. Currie, J. W. Muir, D. A. Forrest, and M.-J. Spencer. 1986. Eur. J. Cell Biol. 41:279-289). Our findings indicate that the plus ends of many of these apically nucleated microtubules are captured by the basal desmosomes. Hence, the situation may be analogous to the polar-nucleation/chromosomal-capture scheme for kinetochore microtubule assembly in mitotic and meiotic spindles. The cell surface-associated nucleation-elongation-capture mechanism proposed here may also apply during assembly of transcellular microtubule arrays in certain other animal tissue cell types.  相似文献   

12.
Specialized mechanical connection between exoskeleton and underlying muscles in arthropods is a complex network of interconnected matrix constituents, junctions and associated cytoskeletal elements, which provides prominent mechanical attachment of the epidermis to the cuticle and transmits muscle tensions to the exoskeleton. This linkage involves anchoring of the complex extracellular matrix composing the cuticle to the apical membrane of tendon cells and linking of tendon cells to muscles basally. The ultrastructural arhitecture of these attachment complexes during molting is an important issue in relation to integument integrity maintenance in the course of cuticle replacement and in relation to movement ability. The aim of this work was to determine the ultrastructural organization of exoskeleton - muscles attachment complexes in the molting terrestrial isopod crustaceans, in the stage when integumental epithelium is covered by both, the newly forming cuticle and the old detached cuticle. We show that the old exoskeleton is extensively mechanically connected to the underlying epithelium in the regions of muscle attachment sites by massive arrays of fibers in adult premolt Ligia italica and in prehatching embryos and premolt marsupial mancas of Porcellio scaber. Fibers expand from the tendon cells, traverse the new cuticle and ecdysal space and protrude into the distal layers of the detached cuticle. They likely serve as final anchoring sites before exuviation and may be involved in animal movements in this stage. Tendon cells in the prehatching embryo and in marsupial mancas display a substantial apicobasally oriented transcellular arrays of microtubules, evidently engaged in myotendinous junctions and in apical anchoring of the cuticular matrix. The structural framework of musculoskeletal linkage is basically established in described intramarsupial developmental stages, suggesting its involvement in animal motility within the marsupium.  相似文献   

13.
The microtubule proteome encompasses tubulin and a diverse group of proteins which associate with tubulin upon microtubule formation. These proteins either determine microtubule organization and function or their activity is influenced by microtubule association. To characterize the microtubule proteome in Artemia franciscana, tubulin assembly was induced with taxol in vitro after 0 and 12 h of post-diapause development. Proteins obtained by extraction of microtubules with 0.5 M NaCl were electrophoresed in two-dimensional gels and analyzed by mass spectrometry. Fifty-five proteins were identified with 10 of these occurring at both developmental stages, and multiple isoforms were observed for some proteins of the Artemia proteome. Their functions include roles in membrane transport, metabolism, chaperoning and protein synthesis, thus reflecting physiological properties of encysted Artemia such as stress resistance and the ability to rapidly initiate post-diapause development. For example, chaperones may protect tubulin during encystment and facilitate folding in metabolically active embryos. Additionally, the interaction of metabolic enzymes with microtubules funnels reaction intermediates, potentially enhancing efficiency within biochemical processes. This study represents the first systematic characterization of a crustacean microtubule proteome. Although it is difficult to be certain that all protein associations documented herein occur in vivo, the results suggest how protein-protein interactions contribute to cytoplasmic organization while implying how Artemia embryos resist stress and remain capable of development once diapause terminates.  相似文献   

14.
Cytoplasmic microtubules can be divided into two subpopulations: 1) those adjacent to the nucleus (perinuclear), and 2) those distributed between the myofilament bundles (nonperinuclear). Previous observations (Cartwright and Goldstein, '83) indicate total cytoplasmic microtubule numeric density increases to a maximum at 5-9 days and decreases to the steady value of the adult muscle. We have examined the numeric density (mean numbers of microtubule profiles per micron2 cross-sectional area) of the perinuclear subpopulation and compared it to the numeric density of the total cytoplasmic microtubule population in postnatally developing rat papillary muscle ages 1, 3, 5, 9, 21, and 42 days, and adult. The perinuclear region was defined as the area around the nucleus which extends to the 0.273 micron from the nuclear envelope. The density of perinuclear microtubules did not change with postnatal development. Our study suggests that perinuclear microtubules are a separate and relatively stable subpopulation of the total population of cytoplasmic microtubules and may serve a function different from that of the more variable nonperinuclear microtubules.  相似文献   

15.
The proper partitioning of the genome during meiosis depends on the correct segregation of chromosomes. Errors in this process result in the production of aneuploid gametes, a major cause of birth defects and infertility in humans. In order to segregate properly in meiosis, homologous chromosome partners must attach to microtubules that emanate from opposites poles of the spindle. However, a recent study in yeast has shown that, remarkably, the initial attachments between microtubules and the chromosomes are usually incorrect, which would lead to catastrophic segregation errors, but they are nearly always corrected through the detachment and reattachment of the microtubules. Here we review the reasons for the initial incorrect attachments, which stem from the timing of their formation early in the spindle assembly process, and the fact that the microtubule organizers, called spindle pole bodies in yeast, are not equal. One spindle pole body is older and better able to produce microtubules that attach to the chromosomes. We draw parallels to recent findings in animal cells and suggest that these early microtubule attachments, while often incorrect, may serve an important role in spindle assembly, which, in the long-term, promotes high-fidelity chromosome segregation.  相似文献   

16.
Bearer  E. L.  Reese  T. S. 《Brain Cell Biology》1999,28(2):85-98
Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 µm with some at least as long as 3.5 µm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.  相似文献   

17.
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organelles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.  相似文献   

18.
Summary The immunoreactivity of a panel of anti-tubulin monoclonal antibodies with spreadingMizuhopecten yessoensis hemocytes was studied by immunofluorescence and immunoblotting. In immunoblotting all the antibodies used reacted only with bands corresponding to the position of tubulin subunits. Hemocytes showed a reorganization of microtubules and microfilaments during cell spreading. In spread-out cells the TU-04 antibody stained microtubules growing out of the centriole in the cell body; in contrast to TU-07 and TU-10 antibodies, which stained microspike-like bundles on the periphery of the cells. The presence of microfilaments in microspikes was detected by rhodamine-labeled phalloidin.Abbreviations CB cytoskeletal buffer - SWAM-FITC fluorescein isothiocyanate-labeled swine anti mouse immunoglobulin - MTOC microtubule organizing centers - SDS-PAGE SDS polyacrylamide gel electrophoresis  相似文献   

19.
Wolfgang Hensel 《Planta》1989,177(3):296-303
Tissue slices of living root caps of cress (Lepidium sativum L.), two to three cell layers in thickness, were prepared by a microsurgical procedure. The viability, cellular structures and cytoplasmic movement of the cells were examined in the light microscope. Nuclei, amyloplasts, vacuoles and endoplasmic reticulum were identified and their positions confirmed after fixation and observation of the same cells in the electron microscope. The distribution of microtubules was shown by immunocytochemistry. During germination, microtubules appear first at the distal edges of the statocytes, while in mature statocytes a distal domain of criss-crossed microtubules could be distinguished from a proximal domain with transversally oriented microtubules. Microfilaments in young statocytes form a nuclear enclosure; in mature statocytes bundles of microfilaments fan out into the cell cortex. The transition from statocytes to secretion cells is accompanied by a more pronounced cortical network of microfilaments, while the nucleus-associated microfilaments remain visible. It is suggested that these microfilaments play a role in the positioning of the nucleus and the translocation of endoplasmic reticulum.Abbreviations ER endoplasmic reticulum - MF microfilament - MT microtubule  相似文献   

20.
The Dufour gland in workers of vespine wasps appears as an unpaired tubiform gland that opens in close proximity to the sting base. The epithelial cells that line the central reservoir are characterized by apical microvillus-like projections and deep basal invaginations. Their cytoplasm contains a well-developed Golgi apparatus, numerous mitochondria, as well as strands of smooth endoplasmic reticulum. The Dufour gland duct occurs ventrally to the venom gland duct, and bends downward near the sting base to open in the dorsal vaginal wall. In this region, the duct is dorsoventrally flattened, and shows conspicuous bundles of parallel microtubules in the epithelial cells, that transmit the pulling forces of the myofilaments of the underlying muscular supply to the cuticle. This results in an active opening mechanism regulated by muscular contraction, while passive closure probably results from the return of the cuticular intima to a rest position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号