首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A peptide ranging from residues 229 to 240 (ENESANEGYRFG) of D1 protein was synthesized by stepwise solid-phase method. Resolution enhancement techniques were combined with band curve-fitting procedures to quantitate the FTIR spectra in the amide I' region (1700-1600 cm-1). FTIR analysis showed that DCMU induced drastic structural modification with a relative decrease of the unordered structure and turns, and a substantial increase of α-helix, which indicated that a much more compact structure was formed when DCMU was applied. The results may reflect molecular information for the protective effect of DCMU against photoinhibition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The redox potential of Q(A) in photosystem II (PSII) is known to be lower by approximately 100 mV in the presence of phenolic herbicides compared with the presence of DCMU-type herbicides. In this study, the structural basis underlying the herbicide effects on the Q(A) redox potential was studied using Fourier transform infrared (FTIR) spectroscopy. Light-induced Q(A)(-)/Q(A) FTIR difference spectra of Mn-depleted PSII membranes in the presence of DCMU, atrazine, terbutryn, and bromacil showed a strong CO stretching peak of Q(A)(-) at 1,479 cm(-1), while binding of phenolic herbicides, bromoxynil and ioxynil, induced a small but clear downshift by approximately 1 cm(-1). The CO peak positions and the small frequency difference were reproduced in the S(2)Q(A)(-)/S(1)Q(A) spectra of oxygen-evolving PSII membranes with DCMU and bromoxynil. The relationship of the CO frequency with herbicide species correlated well with that of the peak temperatures of thermoluminescence due to S(2)Q(A)(-) recombination. Density functional theory calculations of model hydrogen-bonded complexes of plastoquinone radical anion showed that the small shift of the CO frequency is consistent with a change in the hydrogen-bond structure most likely as a change in its strength. The Q(A)(-)/Q(A) spectra in the presence of bromoxynil, and ioxynil, which bear a nitrile group in the phenolic ring, also showed CN stretching bands around 2,210 cm(-1). Comparison with the CN frequencies of bromoxynil in solutions suggested that the phenolic herbicides take a phenotate anion form in the Q(B) pocket. It was proposed that interaction of the phenolic C-O(-) with D1-His215 changes the strength of the hydrogen bond between the CO of Q(A) with D2-His214 via the iron-histidine bridge, causing the decrease in the Q(A) redox potential.  相似文献   

3.
The photodamage process of photosystem II by strong illumination was investigated by examining the herbicide effects on the photoinactivation of redox cofactors. O(2)-evolving photosystem II membranes from spinach in the absence of herbicide and in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and bromoxynil were subjected to strong white-light illumination at 298K, and the illumination-time dependence of the activities of Q(A), the Mn cluster, and P680 were monitored using light-induced Fourier transform infrared (FTIR) difference spectroscopy. The decrease in the Q(A) activity was suppressed and accelerated by DCMU and bromoxynil, respectively, in comparison with the sample without herbicide. The intensity change in the S(2)/S(1) FTIR signal of the Mn cluster exhibited a time course virtually identical to that in the Q(A) signal in all the three samples, suggesting that the loss of the S(1)→S(2) transition was ascribed to the Q(A) inactivation and hence the Mn cluster was inactivated not faster than Q(A). The decrease in the P680 signal was always slower than that of Q(A) keeping the tendency of the herbicide effect. Degradation of the D1 protein occurred after the P680 inactivation. These observations are consistent with the acceptor-side mechanism, in which double reduction of Q(A) triggers the formation of (1)O(2)* to promote further damage to other cofactors and the D1 protein, rather than the recently proposed mechanism that inactivation of the Mn cluster initiates the photodamage. Thus, the results of the present study support the view that the acceptor-side mechanism dominantly occurs in the photodamage to PSII by strong white-light illumination.  相似文献   

4.
A peptide ranging from residue 229 to 240 of the D1 protein of Photosystem (PS) II was synthesized and lanthanides were used as candidates of calcium. Fluorescence and FTIR spectroscopy were used to test the conformational adaptation after lanthanide additions. Fluorescence spectroscopy showed that the synthetic peptide provides lanthanide binding site, and that glutamic acids are involved in lanthanide binding. Resolution enhancement techniques were combined with band curve-fitting procedures to quantitate the FTIR spectral information from the amide 1 bands. The relative areas of these component bands indicate that lanthanide induced a substantial decrease in the amount of unordered structure and turns, while a corresponding increase in the amount of -helix and open loop was also observed. This indicates that a relatively compact structure of the synthetic peptide is formed if lanthanides are applied. The results may reflect on the physiological and biochemical function of calcium in PS II, including preventing D1 from trypsin digestion.Abbreviations DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea - FTIR Fourier transform infrared - FSD Fourier self-deconvolution - PS Photosystem - QB Secondary plastoquinone electron acceptor of PS II  相似文献   

5.
The light saturated rate of photosystem I-dependent electron transport (ascorbate/dichlorophenol-indophenol → methyl vilogen in presence of 1 micromolar 3-[3,4-dichlorophenyl]-1,1-dimethyl urea [DCMU]) was increased by a high concentration of DCMU added to broken and uncoupled chloroplasts isolated from pea (Pisum sativum). At 50 micromolar DCMU, the increase was around 50%. No stimulation was observed under limiting intensity of illumination, indicating that the relative quantum yield of electron transport was not affected by high DCMU. The light-saturated rate in coupled (to proton gradient formation) chloroplasts was unchanged by 50 micromolar DCMU, suggesting that the rate-limitation imposed by energy coupling was not affected. Using N,N,N′,N′-tetramethyl-p-phenylene diamine as electron donor, essentially no DCMU stimulation of the rate was observed, indicating further that the electron donation at a site close to P700 was not affected by high DCMU. It is concluded that DCMU, in the range of 10 to 50 micromolar, affected the thylakoid membranes in such a way that the rate constant of electron donation by dichlorophenol-indophenol at the site prior to the site of energy coupling increased. Further observations that DCMU at 100 micromolar stimulated the rate in coupled chloroplasts indicated an additional DCMU action, presumably by uncoupling the chloroplasts from phosphorylation, as suggested by Izawa (Shibata et al., eds, Comprehensive Biochemistry and Biophysics of Photosynthesis, University Press, State College, Pennsylvania, pp 140-147, 1968). A scheme has been proposed for multiple sites of DCMU action on the electron transport system in chloroplasts.  相似文献   

6.
Acidification of chloroplasts in the dark causes a decrease in the ability of ferrocyanide to reduce the oxidized cytochrome, which is reversible upon raising the pH. This effect is inhibited if 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is added to the medium before acidification. DCMU inhibition of the loss of ferrocyanide reduction at pH 5.0 occurs at low DCMU concentrations, half-inhibition requiring 1 DCMU:400 chlorophyll molecules under conditions where half-inhibition of oxygen evolution requires the addition of 1 DCMU: 100 chlorophylls. Potentiometric titration shows that the midpoint potential of “high potential” cytochrome b-559 is +395 mV at pH 7.8, +335 mV at pH 5.0, and in the presence of DCMU +380 mV at pH 5.O. The ability of low concentrations of DCMU to exert a specific effect on a property associated with “high potential” cytochrome b-559 implies that this cytochrome, which is known to be in close structural proximity to the reduction center of photosystem II, is a principle site of action of DCMU.  相似文献   

7.
The effects of DCMU on the oxidizing side of PS II were studiedwith Triton-solubilized PS II membranes depleted of functionalMn. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) non-competitivelyinhibited the diphenylcarbazide-supported (DPC-supported) photoreductionof silicomolybdate (SiMo) at concentrations more than ten timeshigher than that required for inhibition of the DPC-supportedphotoreduction of 2,6-dichlorophenolindophenol (DCIP). The maximumfluorescence intensity was also reduced by DCMU at a similarconcentration to that required for the inhibition of the SiMophotoreduction. These findings suggest two inhibitory sitesof action of DCMU in PS II: one on the reducing side and oneon the oxidizing side of PS II. The inhibition constant forDCMU in the DPC-supported SiMo-photoreduction was 10 µMin every examination. The extent of inhibition was attenuatedby modifications of the PS II oxidizing side by the presenceof functional Mn, by photoinhibition and by chemical modificationsof histidine residues and acidic amino acid residues. Our resultssuggest that DCMU binds to the PS II oxidizing side near Z,D and the high-affinity Mn-binding sites. 1 Present Address and address for all communications: NoriakiTamura (Dr.), Plant Physiology Laboratory Fukuoka Women's University,Kasumigaoka 1-1, Higashi-ku, Fukuoka, 813 Japan. FAX 092-661-2415.  相似文献   

8.
A mutant of Nostoc muscorum that is resistant to 3-(3.4-dichlorophenyl)-I.1-dimethylurea (diuron) has been selected. This mutant maylack the step in photosynthesis that is affected by diuron (DCMU).but it can also use DCMU as a source of carbon and nitrogen.Another mutant of this organism resistant to L-methionine-DL-sulphoximine(MSO), that was isolated previously, also shows some cross-resistanceto DCMU. Key words: Nostoc muscorum, Diuron resistant mutants, MSO resistant mutants  相似文献   

9.
Silicomolybdate functions as an electron acceptor in a Photosystem II water oxidation (measured as O2 evolution) partial reaction that is 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) insensitive, that is, reduction os silicomolybdate occurs at or before the level of Q, the primary electron acceptor for Photosystem II. This report characterizes the partial reaction with the principal findings being as follows: 1. Electron transport to silicomolybdate significantly decreased room temperature Photosystem I side of the DCMU had no effect on the fluorescence level, consistent with silicomolybdate accepting electrons at or before Q. In the absence of DCMU, silicomolybdate is also reduced at a site on the Photosystem I side of the DCMU block, prior to or at plastoquinone, since the plastoquinone antagonist dibromothymoquinone (DBMIB) did not affect the electron transport rate. 3. Electron transport from water to silicomolybdate (+ DCMU) is not coupled to ATP formation, nor is there a measurable accumulation of protons within the membrane (measured by amine uptake). Silicomolybdate is not inhibitory to phosphorylation per se since neither cyclic nor post-illumination (XE) phosphorylation were inhibited. 4. Uncouplers stimulated electron transport from water to silicomolybdate in the pH range of 6 to 7, but inhibited at pH values near 8. These data are consistent with the view that when electron flow is through the abbreviated sequence of water to Photosystem II to silicomolybdate (+ DCMU), conditions are not established for the water protons to be deposited within the membrane. Experiments reported elsewhere (Fiaquinta, R.T., Dilley, R.A. and Horton, P.(19741 J. Bioenerg. 6, 167-177) and these data, are consistent with the hypothesis that electron transport between Q and plastoquinone energizes a membrane conformational change that is required to interact with the water oxication system so as to result in the deposition of water protons either within the membrane itself or within the inner oxmotic space.  相似文献   

10.
In order to elucidate the mode of action of some herbicides, effect of several anilide type herbicides on the respiration of yeast cells was studied. The results obtained were as follows: 1) DCPA (3,4-dichloropropionanilide) and DCMU (3-(3,4-dichlorophenyl)-1,1- dimethylurea), the powerful inhibitors of the Hill reaction in photosynthesis, inhibited the oxygen uptake of yeast cells at low concentrations. 2) DCPA and DCMU inhibited the enzymic reduction of cytochrome-c by the yeast cell-free preparation, but not the reduction of dye. 3) The oxidation of cytochrome-b was inhibited in the yeast cells treated with DCPA or DCMU.  相似文献   

11.
Guo Y  Tan J 《Bio Systems》2009,95(2):98-103
In this research, we demonstrated that the plastoquinone-related electron-transport kinetics in photosynthesis could be sufficiently described with as few as three state variables, Q(A)(-), Q(B)(-), and Q(B)(2-). A third-order kinetic model structure was developed with delayed fluorescence as the measurable output. Delayed fluorescence emissions from drought-stressed, DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] treated, or healthy plants were measured with a photon-counting system and used to verify the model structure through nonlinear least-squares optimization. While there were no visible differences between the healthy and the stressed plants, the model showed an obvious decrease of Q(A) reduction rate in the drought-stressed samples and a clear decline of functional Q(A)Q(B) pairs in the DCMU-treated samples. The changes were consistent with the known mechanisms by which water and DCMU affect electron transport in photosynthetic plants. The results proved that the three-state formulation was a compact and practically useful model structure for describing delayed fluorescence from plants.  相似文献   

12.
When photosynthesis of the blue-green alga Anacystis nidulans was measured as 14CO2-fixation, the inhibitory effect of DCMU at low concentrations was greatest when mainly Photosystem 1 (PS 1) (excitation at 446 or 687 nm) was operative. At concentrations above 10-6M the inhibition on 14CO2-fixation was greatest when mainly Photosystem 2 (PS 2) was operative (excitation at 619). During excitation of PS 1, the excretion of glycolate was stimulated at low concentrations of DCMU (5 × 10-8M and lower), while higher concentrations inhibited excretion. All concentrations of DCMU inhibited glycolate excretion when mainly PS 2 was excited. The curves showing the relative effect of DCMU on the two photosystems, measured as PS 1/PS 2, had opposite shapes for 14CO2-fixation and glycolate excretion. An increase in 14CO2-fixation coincided with a decrease in glycolate excretion and vice versa. It appears that the increased rate of photosynthesis when mainly PS 1 was operative relative to that when mainly PS 2 was excited, increases the consumption of glycolate in an oxidation process associated with the excitation of PS 1, resulting in less excretion of glycolate to the medium. The influence of DCMU inhibition on labelled amino acid pools connected to the glycolate pathway (glycine-serine) is quite similar to that for 14CO2-fixation. At concentrations below 10-6M DCMU, inhibition of 14CO2- incorporation into the amino acids was greatest when PS 1 was excited, while at the higher concentrations tested, inhibition was greater when PS 2 was excited. We conclude that the metabolism of glycine and serine is closely connected to the rate of photosynthesis.  相似文献   

13.
《Plant science》1986,46(1):5-10
Cyanobacterin, a secondary metabolite produced by the cyanobacterium, Scytonema hofmanni, inhibits the growth of algae and plants. This compound is a potent inhibitor of photosynthetic electron transport and acts at a site in photosystem II (PS II). To further define the site of action of cyanobacterin, the effects of this natural product were investigated in a herbicide-resistant mutant of the cyanobacterium, Anacystis nidulans R2D2-X1. A. nidulans R2D2-X1 was reported to grow and maintain photosynthetic electron transport in the presence of 20 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 6.0 μM atrazine. Resistance was attributed to an altered 32 kDa (quinone-binding, QB) protein [6]. In the presence of Hill electron acceptors, K3Fe(CN)6 and dichlorophenol-indophenol (DCPIP), spheroplasts of A. nidulans R2D2-X1 were inhibited by cyanobacterin at the same concentration as wild type spheroblasts. Under these same conditions, spheroplasts of the mutant maintained their resistance to DCMU. Similar results were obtained with isolated thylakoid membranes. In contrast, silicomolybdate reduction, which is resistant to DCMU inhibition, was very sensitive to cyanobacterin. We conclude that cyanobacterin inhibits electron transport in PS II at a unique site which is different from that of DCMU.  相似文献   

14.
The effect of some more or less harmful compounds like Cd, Pb, Ni, Ti salts and DCMU at low concentrations on the development of chloroplasts in maize and bean seedlings was investigated. Chlorophyll content, chlorophyll a/b ratio, photosynthetic activity (14CO2 fixation), chlorophyll-protein composition of thylakoid membranes, fluorescence spectra of chloroplasts, fluorescence induction parameters of leaves and electron microscopic structure of maize and bean chloroplasts as well as growth parameters were studied. Stimulation of chlorophyll synthesis and photosynthetic activity was observed at different intervals during all of the treatments, while chlorophyll a/b ratios and fluorescence properties of leaves or chloroplasts did not change considerably except in DCMU treated plants. Heavy metal treatments increased the amount of photosystem I and light-harvesting complex II, while decreased amount of photosystem I and higher amount of light-harvesting complex II was found in DCMU treated thylakoids. Electron microscopy showed only sligth differences in the morphology of chloroplast lamellar system (mostly in DCMU treated plants), while the status of the plasmalemma and tonoplast seemed to be altered as a result of certain metal treatments. Results showed the expression of a cytokinin-like effect on the development of chloroplasts. It is assumed, that these low-dose stressors generate non-specific alarm reactions in plants, which may involve changes of the hormonal balance.  相似文献   

15.
White RA  Hoober JK 《Plant physiology》1994,106(2):583-590
Initiation of thylakoid membrane assembly was examined in degreened cells of Chlamydomonas reinhardtii y1 cells depleted of thylakoid membranes and photosynthetic activity by growth in the dark for 3 to 4 d. Photoreductive activities of photosystem II (PSII) and photosystem I (PSI) increased with no apparent lag when degreened cells were exposed to light at 38[deg]C. However, fluorescence transients induced by actinic light, which reflect the functional state of PSII, changed only slightly during the first 2 h of greening. When these cells were treated with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) or saturating light, fluorescence increased commensurate with the cellular content of chlorophyll. In similar experiments with greening cells of C. reinhardtii CC-2341 (ac-u-g-2.3), a PSI-minus strain, fluorescence increased with chlorophyll without treatment with DCMU. These data suggested that fluorescence of initial PSII centers in greening y1 cells was quenched by activity of PSI. Continuous monitoring of fluorescence in the presence or absence of DCMU showed that assembly of quenched PSII centers occurred within seconds after exposure of y1 cells to light. These results are consistent with initial assembly of PSI and PSII within localized domains, where their proximity allows efficient energy coupling.  相似文献   

16.
3-(3',4'-Dichlorophenyl)-1',1'-dimethyl urea (DCMU) inducedthe photobleaching of chlorophylls and carotenoids in isolatedchloroplasts of Hordeum vulgare. In chloroplasts illuminatedin both the absence and presence of DCMU (5.0 mmol m–3),the destruction of carotenoid preceded that of the chlorophylls.The rate of photodestruction was accelerated by the presenceof DCMU. After only 2 h illumination the rates of loss of ß-caroteneand of the epoxyxanthophylls, neoxanthin and violaxanthin, weresimilar (approximately 40–50% loss in the presence of5–0 mmol m–3 DCMU) but weremuch greater than thatof lutein (25% loss). Analysis of the individual pigment-proteincomplexes, isolated from chloroplasts following such treatment,showed that whilst pigment destruction had occurred in all complexes,the relative content of the LHCP2/CPa complexes (containingthe PSII core) had fallen to the greatest extent. Further illuminationof the chloroplasts, for up to 22 h, resulted in far greaterbleaching but showed a similar pattern of pigment loss, withDCMU again accelerating the rate at which this loss occurred.ß-Carotene-5,6-epoxide was identified as a productof such photo-oxidative conditions. Key words: DCMU, carotenoids, chlorophylls, photobleaching, ß-carotene-5,6-expoxide  相似文献   

17.
Effect of two photosynthetic inhibitor herbicides, atrazine (both purified and formulated) and [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] (DCMU), on the growth, macromolecular contents, heterocyst frequency, photosynthetic O2 evolution and dark O2 uptake of wild type and multiple herbicide resistant (MHR) strain of diazotrophic cyanobacterium A. variabilis was studied. Cyanobacterial strains showed gradual inhibition in growth with increasing dosage of herbicides. Both wild type and MHR strain tolerated < 6.0 mg L(-1) of atrazine (purified), < 2.0 mg L(-1) of atrazine (formulated) and < 0.4 mg L(-1) of DCMU indicating similar level of herbicide tolerance. Atrazine (pure) (8.0 mg L(-1)) and 4.0 mg L(-1) of atrazine (formulated) were growth inhibitory concentrations (lethal) for both wild type and MHR strain indicating formulated atrazine was more toxic than the purified form. Comparatively lower concentrations of DCMU were found to be lethal for wild type and MHR strain, respectively. Thus, between the two herbicides tested DCMU was more growth toxic than atrazine. At sublethal dosages of herbicides, photosynthetic O2 evolution showed highest inhibition followed by chlorophyll a, phycobhiliproteins and heterocyst differentiation as compared to carotenoid, protein and respiratory O2 uptake.  相似文献   

18.
19.
Ryo Nagao  Sho Kitazaki  Takumi Noguchi 《BBA》2018,1859(2):129-136
Light-induced Fourier transformed infrared (FTIR) difference spectroscopy is a powerful method to study the structures and reactions of redox cofactors involved in the photosynthetic electron transport chain. So far, most of the FTIR studies of the reactions of oxygenic photosynthesis have been performed using isolated photosystem I (PSI) and photosystem II (PSII) preparations, which, however, could be modified during isolation procedures. In this study, we developed a methodology to evaluate the photosynthetic activities of thylakoids using FTIR spectroscopy. FTIR difference spectra upon successive flashes using thylakoids from spinach exhibited signals typical of the S-state cycle at the Mn4CaO5 cluster and QB reactions in PSII with period-four and -two oscillations, respectively. Similar measurement in the presence of an artificial quinone as an exogenous electron acceptor showed features specific to the S-state cycle. Simulations of the oscillation patterns provided the quantum efficiencies of the S-state cycle and electron transfer in PSII. Moreover, FTIR measurement under continuous illumination on thylakoids in the presence of DCMU showed signals due to QA reduction and P700 oxidation simultaneously. From the relative amplitudes of marker bands of QA? and P700+, the molar ratio of photoactive PSII and PSI centers in thylakoids was estimated. FTIR analyses of the photo-reactions in thylakoids, which are more intact than isolated photosystems, will be useful in investigations of the photosynthetic mechanism especially by genetic modification of photosystem proteins.  相似文献   

20.
The effects of DCMU (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) on the fluorescence induction transient (OJIP) in higher plants were re-investigated. We found that the initial (F(0)) and maximum (F(M)) fluorescence levels of DCMU-treated leaves do not change relative to controls when the treatment is done in complete darkness and DCMU is allowed to diffuse slowly into the leaves either by submersion or by application via the stem. Simultaneous 820 nm transmission measurements (a measure of electron flow through Photosystem I) showed that in the DCMU-treated samples, the plastoquinone pool remained oxidized during the light pulses whereas in uninhibited leaves, the F(M) level coincided with a fully reduced electron transport chain. The identical F(M) values with and without DCMU indicate that in intact leaves, the F(M) value is independent of the redox state of the plastoquinone pool. We also show that (i) the generally observed F(0) increase is probably due to the presence of (even very weak) light during the DCMU treatment, (ii) vacuum infiltration of leaf discs leads to a drastic decrease of the fluorescence yield, and in DCMU-treated samples, the F(M) decreases to the I-level of their control (leaves vacuum infiltrated with 1% ethanol), (iii) and in thylakoid membranes, the addition of DCMU lowers the F(M) relative to that of a control sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号