首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

2.
The aim of this work was to identify which aspects of photosynthetic metabolism respond most sensitively to leaf water deficit. Spinach (Spinacia oleracea L.) leaf discs were floated on sorbitol concentrations of increasing molarity and changes of the protoplast volume were estimated using [14C]sorbitol and 3H2O penetration. Detached leaves were also wilted until 10% of their fresh weight was lost. Photosynthesis was studied at very high external CO2 concentrations, to eliminate the effect of closing stomata. There was no large inhibition of CO2 fixation after wilting leaves, or until the external water deficit was greater than-1.2 MPa. However, partitioning changed markedly at these moderate water deficits: more sucrose and less starch was made. When an inhibition of CO2-saturated photosynthesis did appear at a water deficit of-2.0 MPa and above, measurements of chlorophyll-fluorescence quenching and metabolite levels showed the thylakoid reactions were not especially susceptible to short-term water stress. The inhibition was accompanied by a small increase of the triose phosphate: ribulose-1,5-bisphosphate ratio, showing regeneration of ribulose-1,5-bisphosphate was affected. However, there was also a general increase of the estimated concentrations of most metabolites, indicating that there is no specific site for the inhibition of photosynthesis. Increasing water deficit led to a large increase of fructose-2,6-bisphosphate. This is explained in terms of a simultaneous increase of fructose-6-phosphate and inorganic phosphate as the cell shrinks. The high fructose-2,6-bisphosphate led to the accumulation of triose phosphates, and the potential significance of this for protection against photoinhibition is discussed. There was an increase in the extractable activity of sucrose-phosphate synthase. This was only detected when the enzyme was assayed in conditions which distinguish between different kinetic forms which have previously been identified in spinach leaves. It is proposed that activation of sucrose-phosphate synthase is one of the first sites at which spinach leaves respond to a rising water deficit. This could be of importance for osmoregulation.Abbreviations Chl chlorophyll - Fru1,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA glycerate-3-phosphate - Pi inorgamic phosphate - Ru1,5bisP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - triose-P sum of glyceraldehyde-3-phosphate and dehydroxyacetone phosphate - UDPGlc uridine diphosphoglucose  相似文献   

3.
H. Ekkehard  Mark Stitt 《Planta》1989,179(1):51-60
Spinach leaf discs were floated on methyl-viologen solutions (5–200 nmol·l-1) and the effect on photosynthetic metabolism was then investigated under conditions of saturating CO2. Methyl viologen led to increased non-photochemical quenching, and the ATP/ADP ratio increased from <2 to >10. Comparison of the apparent quantum yield and non-photochemical quenching indicated that these concentrations of methyl viologen were only catalysing a marginal electron flux, and that the decrease in quantum yield was mainly the result of pH-triggered energy dissipation. Similar changes were also obtained after supplying tentoxin to inhibit the chloroplast ATP synthase and increase the energisation of the thylakoids. The photosystem-II acceptor, QA, was monitored by photochemical fluorescence quenching, and became more reduced. In contrast, the activation of NADP-malate dehydrogenase decreased, showing that the acceptor side of photosystem I becomes more oxidised. Similar changes were observed after supplying tentoxin. It is concluded that increased thylakoid energisation can lead to a substantial restriction of linear electron transport. Analysis of metabolite levels showed that glycerate-3-phosphate reduction was imporved, but that there was a large accumulation of triose phosphates and fructose-1,6-bisphosphate. This is the consequence of an inhibition of the regeneration of ribulose-1,5-bisphosphate, caused by inactivation of the stromal fructose-1,6-bisphosphatase and, to a lesser extent, phosphoribulokinase. Methyl viologen also led to inactivation of sucrose-phosphate synthase, and abolished the response of fructose-2,6-bisphosphate to rising rates of photosynthesis. This provides evidence for a primary role of glycerate-3-phosphate in controlling the activity of fructose-6-phosphate, 2-kinase and, thence, the fructose-2,6-bisphosphate concentration as the rate of photosynthesis increases. It is concluded that the very moderate ATP/ADP ratios found in chloroplasts are the results of constraints on the operation of ATP synthase. They can be increased if the thylakoid energisation is increased. However, the increased energisation acts directly or indirectly to disrupt many other aspects of photosynthetic metabolism including linear electron transport, activation of the Calvin cycle, and the control of sucrose and starch synthesis.Abbreviations and symbols Frul,6P2 (Fru1,6Pase) fructose-1,6-bisphosphate(ase) - Fru2,6P, (Fru2,6Pase) fructose-2,6-bisphosphate(-ase) - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - Pi inorganic phosphate - PSI and PSII photosystems I and II - qE high energy' quenching of chlorophyll fluorescence - PGA glycerate-3-phosphate - QA primary stable acceptor of PSII - Ru5P (Ru1,5P2) ribulose-5-phosphate (-1,5-bisphosphate) - SPS sucrose-phosphate synthase - triose P dihydroxyacetone phosphate plus glyceraldehyde-3-phosphate - s apparent quantum yield Dedicated to Professor E. Latzko on the occasion of his 65th birthday  相似文献   

4.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

5.
J. Brangeon  A. Nato  A. Forchioni 《Planta》1989,177(2):151-159
In-situ-localization techniques have been adapted to the ultrastructural detection of the holoenzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) and its composite large- and smallsubunit mRNAs in wild-type and mutant RuBPCase deficient plantlets of Nicotiana tabacum L. Immuno-gold techniques which show the distribution of target proteins have confirmed visually the presence of the holoenzyme in the wild-type plastids and its total absence in the enzyme-less mutant. Using in-situ hybridization coupled with electron microscopy and biotinylated probes for the two subunits, we have directly visualized specific small-subunit mRNAs located in the cytoplasm and large-subunit mRNAs confined to plastids in the enzyme-deficient mutant, and with apparent distributions comparable to those visualized in the wild-type counterpart. These results show that (i) gene products can be visualized in situ by electronmicroscopy techniques under conditions where the respective cellular compartments are readily recognizable and (ii) that an accumulation of mRNAs corresponding to the composite subunits can occur without translation and-or assembly of the protein.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU RuBPCase small subunit - LSU RubBPCase large subunit  相似文献   

6.
(i) We have studied the influence of reduced phosphoglucose-isomerase (PGI) activity on photosynthetic carbon metabolism in mutants of Clarkia xantiana Gray (Onagraceae). The mutants had reduced plastid (75% or 50% of wildtype) or reduced cytosolic (64%, 36% or 18% of wildtype) PGI activity. (ii) Reduced plastid PGI had no significant effect on metabolism in low light. In high light, starch synthesis decreased by 50%. There was no corresponding increase of sucrose synthesis. Instead glycerate-3-phosphate, ribulose-1,5-bisphosphate, reduction of QA (the acceptor for photosystem II) and energy-dependent chlorophyll-fluorescence quenching increased, and O2 evolution was inhibited by 25%. (iii) Decreased cytosolic PGI led to lower rates of sucrose synthesis, increased fructose-2,6-bisphosphate, glycerate-3-phosphate and ribulose-1,5-bisphosphate, and a stimulation of starch synthesis, but without a significant inhibition of O2 evolution. Partitioning was most affected in low light, while the metabolite levels changed more at saturating irradiances. (iv) These results provide decisive evidence that fructose-2,6-bisphosphate can mediate a feedback inhibition of sucrose synthesis in response to accumulating hexose phosphates. They also provide evidence that the ensuing stimulation of starch synthesis is due to activation of ADP-glucose pyrophosphorylase by a rising glycerate-3-phosphate: inorganic phosphate ratio, and that this can occur without any loss of photosynthetic rate. However the effectiveness of these mechanisms varies, depending on the conditions. (v) These results are analysed using the approach of Kacser and Burns (1973, Trends Biochem. Sci. 7, 1149–1161) to provide estimates for the elasticities and flux-control coefficient of the cytosolic fructose-1,6-bisphosphatase, and to estimate the gain in the fructose-2,6-bisphosphate regulator cycle during feedback inhibition of sucrose synthesis.Abbreviations and symbols Chl chlorophyll - Fru6P fructose-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - Fru-1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - Fru2,6Pase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - PGI phosphoglucose isomerase - Pi inorganic phosphate - QA acceptor for photosystem II - Ru1,5bisP ributose-1,5-bisphosphate - SPS sucrose-phosphate synthase  相似文献   

7.
The abundances of ribulose-1,5-bisphosphate carboxylate/oxygenase (Rubisco) and ribulose-5-phosphate (Ru5P) kinase in field-grown soybean (Glycine max L. Merr.) leaves were quantified by a Western blot technique and related to changes in chlorophyll and photosynthetic capacity during senescence. Even though the leaf content of Rubisco was approximately 80-fold greater than that of Ru5P kinase, the decline in the levels of these two Calvin cycle enzymes occurred in parallel during the senescence of the leaves. Moreover, the decrease in the content of Rubisco was accompanied by parallel decreases of both the large and small subunits of this enzyme but not by an accumulation of altered large or small subunit isoforms. With increasing senescence, decreases in abundances of Rubisco, Ru5P kinase and chlorophyll were closely correlated with the decline in photosynthetic capacity; thus, the specific photosynthetic capacity when expressed per abundance of any of these parameters was rather constant despite an 8-fold decrease in photosynthetic capacity. These results suggest that during senescence of soybean leaves the chloroplast is subject to autolysis by mechanisms causing an approximately 80-fold greater rate of loss of Rubisco than Ru5P kinase.Jointly supported by the United States Department of Agricultural Research Service and the Kentucky Agricultural Experiment Station, Lexington (paper No. 88 3 286).Mention of a commercial product does not constitute endorsement by the United States Department of Agriculture.  相似文献   

8.
The relationship between the gas-exchange characteristics of attached leaves of Amaranthus edulis L. and the contents of photosynthetic intermediates was examined in response to changing irradiance and intercellular partial pressure of CO2. After determination of the rate of CO2 assimilation at known intercellular CO2 pressure and irradiance, the leaf was freeze-clamped and the contents of ribulose-1,5-bisphosphate, glycerate-3-phosphate, fructose-1,6-bisphosphate, glucose-6-phosphate, fructose-6-phosphate, triose phosphates, phosphoenolpyruvate, pyruvate, oxaloacetate, aspartate, alanine, malate and glutamate were measured. A comparison between the sizes of metabolite pools and theoretical calculations of metabolite gradients required for transport between the mesophyll and the bundle-sheath cells showed that aspartate, alanine, glycerate-3-phosphate and triose phosphates were present in sufficient quantities to support transport by diffusion, whereas pyruvate and oxaloacetate were not likely to contribute appreciably to the flux of carbon between the two cell types. The amounts of ribulose-1,5-bisphosphate were high at low intercellular partial pressures of CO2, and fell rapidly as the CO2-assimilation rate increased with increasing intercellular partial pressures of CO2, indicating that bundle-sheath CO2 concentrations fell at low intercellular partial pressures of CO2. In contrast, the amount of phosphoenolpyruvate and of C4-cycle intermediates declined at low intercellular partial pressures of CO2. This behaviour is discussed in relation to the co-ordination of carbon assimilation between the Calvin and C4 cycles.Abbreviations PEP phosphoenolpyruvate - PGA glycerate-3-phosphate - p i intercellular CO2 pressure - RuBP ribulose-1,5-bisphosphate - triose-P triose phosphates  相似文献   

9.
N. W. Kerby  L. V. Evans 《Planta》1981,151(5):469-475
Characterization by peptide mapping and amino acid analysis of the two major pyrenoid polypeptides from the brown alga Pilayella littoralis shows that they are very similar to the subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) from this alga. The observed similarities are discussed in relation to previous pyrenoid protein characterization from members of the Chlorophyceae.Abbreviations DTT dithiothreitol - EDTA Na2 ethylenediamine tetraacetic acid (disodium salt) - PMFS phenylmethylsul-phonylfluoride - PVPP polyvinylpyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TRIS 2-amino-2-(hydroxymethyl) propane-1,3-diol - TPCK L-1-tosylamido-2-phenylethylchoromethyl ketone  相似文献   

10.
In some soybean (Glycine max (L.) Merr.) cultivars, fruit removal does not delay the apparent loss of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activity and abundance or the decline in photosynthesis. Analysis of leaf extracts from defruited plants indicated a time-dependent increase in both Rubisco activity and abundance in a 30000 · g pellet fraction in cultivars which had been reported to lose all Rubisco protein from the supernatant fraction. Attempts to solubilize the pelleted Rubisco by increasing the buffer volume/tissue ratio or by adding alkylphenoxypolyethoxyethanol (Triton X-100), ethylenediaminetetraacetic acid (EDTA), or NaCl were unsuccessful. However, treatment of the pellets with denaturants such as 8 M urea or 5% (w/v) sodium dodecyl sulfate (SDS) did release Rubisco from the pellet. Redistribution of protein to the pellet fraction appeared to be specific for Rubisco since the amount of ribulose-5-phosphate kinase (EC 2.7.1.19) found in the pellet fraction of leaf extracts of control and defruited plants was small and constant over time. The loss of soluble Rubisco, and the concomitant increase in insoluble Rubisco, in response to fruit removal varied with genotype and was reproducible in both field and greenhouse environments. In addition, the effect was influenced by node position and light; lower and-or shaded leaves exhibited less Rubisco in the pellet fraction than leaves from the top of the plant that was fully exposed to sunlight. When isolated by sucrose-density-gradient centrifugation, the insoluble Rubisco was found to co-purify with a 30-kDa (kilodalton) polypeptide. These results indicate that alteration of the source/sink ratio by removing fruits results in the formation of an insoluble form of Rubisco in leaf extracts of soybean. Whether or not Rubisco exists as an insoluble complex with the 30-kDa polypeptide in intact leaves of defruited plants remains to be determined.Abbreviations kDa kilodalton - PGA kinase 3-phosphoglyceric acid kinase (EC 2.7.2.3) - Rubisco ribulose-1,5-bisphosphate car-boxylase/oxygenase (EC 4.1.1.39) - Ru5P kinase ribulose-5-phosphate kinase (EC 2.7.1.19) - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis  相似文献   

11.
Summary In order to identify the physiological and biochemical events leading to the negative effects of the presence of sucrose in culture medium on the photosynthetic capacity of plantlets cultivated in vitro, time course in photosynthesis, metabolite pool sizes, and ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity were investigated in strawberry (Fragaria x ananassa Duch. cv. Kent) plantlets following their transfer to medium with or without sucrose. When the plantlets grown in medium without sucrose were transferred to a similar medium with 30 g liter−1 sucrose, their net photosynthesis decreased and their level of phosphorylated compounds increased with time. In addition, initial catalytic turnover, total catalytic turnover, and the activation state of ribulose-1,5-bisphosphate carboxylase decreased in these plantlets. Conversely, when the plantlets grown in medium with 30 g liter−1 sucrose were transferred to a similar medium without sucrose, their net photosynthesis slowly increased with time and their level of phosphorylated compounds slowly decreased. A slow increase with time of initial catalytic turnover, total catalytic turnover, and the activation state of ribulose-1,5-bisphosphate carboxylase was also observed in these plantlets. The results of the present paper suggest that the reduced photosynthetic capacity of strawberry plantlets cultivated in vitro in the presence of sucrose is the consequence of a reduction in the efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase due to its deactivation and the possible presence of putative inhibitors of carboxylation sites.  相似文献   

12.
Trypsin digestion reduces the sizes of both the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from the green alga Chlamydomonas reinhardtii. Incubation of either CO2/Mg2+ -activated or nonactivated enzyme with the transition-state analogue carboxyarabinitol bisphosphate protects a trypsin-sensitive site of the large subunit, but not of the small subunit. Incubation of the nonactivated enzyme with ribulosebisphosphate (RuBP) provided the same degree of protection. Thus, the very tight binding that is a characteristic of the transitionstate analogue is apparently not required for the protection of the trypsin-sensitive site of the large subunit. Mutant enzymes that have reduced CO2/O2 specificities failed to bind carboxyarabinitol bisphosphate tightly. However, their large-subunit trypsin-sensitive sites could still be protected. The K m values for RuBP were not significantly changed for the mutant enzymes, but the V max values for carboxylation were reduced substantially. These results indicate that the failure of the mutant enzymes to bind the transition-state analogue tightly is primarily the consequence of an impairment in the second irreversible binding step. Thus, in all of the mutant enzymes, defects appear to exist in stabilizing the transition state of the carboxylation step, which is precisely the step proposed to influence the CO2/O2 specificity of Rubisco.Abbreviations and Symbols CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - K c K m for CO2 - K o K m for O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation Paper No. 9313, Journal Series, Nebraska Agricultural Research DivisionThis work was supported by National Science Foundation grant DMB-8703820. We thank Drs. Archie Portis and Raymond Chollet for their helpful comments, and also thank Dr. Chollet for graciously providing CABP and [14C]CABP.  相似文献   

13.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

14.
The potential of control analysis to aid our understanding of regulation and control of photosynthetic carbon metabolism is investigated. Methods of metabolic control analysis are used to determine flux control coefficients of photosynthetic reactions from enzyme elasticities. Equations expressing control coefficients symbolically by enzyme elasticities are derived, and general properties of these expressions are analysed. Suggestions for experimental determination of flux control coefficients from enzyme elasticities are given. A simplified model of the Calvin-Benson cycle is used to illustrate interrelations between patterns of photosynthetic metabolites and that of control coefficients.Abbreviations GAPDH glyceraldehyde phosphate dehydrogenase - PGA 3-phosphoglycerate - PGK 3-phosphoglycerate kinase - Pi inorganic phosphate - PRK phosphoribulokinase - RuBP ribulose-1,5-bisphosphate(total, free) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose-5-phosphate  相似文献   

15.
The Chlamydomonas reinhardtii (Dangeard) temperature-conditional mutant 68-11AR is phenotypically indistinguishable from the wild type at the permissive temperature (25°C), but has greatly reduced photosynthetic ability and requires acetate for growth at the restrictive temperature (35°C). The mutant strain is deficient in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) holoenzyme when grown at 35°C. This decrease in the level of enzyme appears to be due to degradation of assembled holoenzyme rather than to a reduction in the synthesis of enzyme subunits. When grown at 25°C, the mutant has a substantial amount of Rubisco. Enzyme purified from 25°C-grown mutant cells was found to have a 16% decrease in the CO2/O2 specificity factor when compared to the wild-type enzyme. This alteration was accompanied by changes in the kinetic constants for both carboxylation and oxygenation. Although the Rubisco active site is located on the chloroplast-encoded large subunit, genetic analysis showed that the 68-11AR strain arose from a nucleargene mutation. The two nuclear genes that encode the Rubisco small subunits (rbcS1 and rbcS2) were cloned from mutant 68-11AR and completely sequenced, but no mutation was found. Analysis of restriction-fragment length polymorphisms also failed to detect linkage between mutant and rbcS gene loci. These results indicate that nuclear genes can influence Rubisco catalysis without necessarily encoding polypeptides that reside within the holoenzyme.Abbreviations and Symbols K c Michaelis constant for CO2 - K o Michaelis constant for O2 - mt mating type - pf paralyzed flagella - RFLP restriction-fragment length polymorphism - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation - CO2/O2 specificity factor C. G. gratefully acknowledges fellowship support from the Consejo Superior de Investigaciones Cientificas (Spain). This work was supported by National Science Foundation grant MCB-9005547, and is published as Paper No. 10481, Journal Series, Nebraska Agricultural Research Division.  相似文献   

16.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

17.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

18.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   

19.
Klaus J. Lendzian 《Planta》1978,143(3):291-296
In a preparation of soluble components from isolated spinach (Spinecia oleracea L.) chloroplasts, the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) is strongly increased by 6-phosphogluconate or by NADPH at pH 8.0. When the thylakoid system is added to these soluble components (reconstituted chloroplast system) plus ferredoxin, the carboxylase is even more strongly activated in the light. This light activation appears to be due to reduction of endogenous NADP+ by electrons from the light reactions transferred via ferredoxin, since NADPH alone can activate the purified enzyme in the dark while reduced ferredoxin does not. The regulatory properties of the enzyme in the reconstituted chloroplast system are compared with those of the isolated enzyme, and their possible physiologic significance is discussed.Abbreviations Fd ferredoxin - PPC pentose phosphate cycle - 6-PGluA 6-phosphogluconate - Rib-5-P ribose-5-phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
Photorespiratory metabolism of the C3-C4 intermediate species Moricandia arvensis (L.) DC has been compared with that of the C3 species, Moricandia moricandioides (Boiss.) Heywood. Assays of glycollate oxidase (EC 1.1.3.1), glyoxylate aminotransferases (EC 2.6.1.4, EC 2.6.1.45) and hydroxypyruvate reductase (EC 1.1.1.29) indicate that the capacity for flux through the photorespiratory cycle is similar in both species. Immunogold labelling with monospecific antibodies was used to investigate the cellular locations of ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), glycollate oxidase, and glycine decarboxylase (EC 2.1.2.10) in leaves of the two species. Ribulose 1,5-bisphosphate carboxylase/oxygenase was confined to the stroma of chloroplasts and glycollate oxidase to the peroxisomes of all photosynthetic cells in leaves of both species. However, whereas glycine decarboxylase was present in the mitochondria of all photosynthetic cells in M. moricandioides, it was only found in the mitochondria of bundle-sheath cells in M. arvensis. We suggest that localized decarboxylation of glycine in the leaves of M. arvensis will lead to improved recapture of photorespired CO2 and hence a lower rate of photorespiration.Abbreviations kDa kilodalton - RuBP ribulose-1,5-bisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号