首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that phorbol myristate acetate (PMA) enhanced A-23187-induced arachidonate release and thromboxane synthesis in human platelets (Mobley, A., and Tai, H. H. (1985) Biochem. Biophys. Res. Commun. 130, 717-723). The mechanism of enhancement by PMA was not elucidated. In the present study, we have shown that PMA-treated platelets exhibited significantly less [1-14C]arachidonate incorporation than did control platelets. However, no significant change in uptake of labeled linoleate or oleate was observed by PMA treatment. Examination of the two enzyme activities involved in arachidonate incorporation into phospholipids indicated that both arachidonoyl-coenzyme A (CoA) synthase and arachidonoyl-CoA lysophosphatide acyltransferase were inactivated following treatment with PMA or 1-oleoyl-2-acetyl glycerol. When platelets were stimulated with A-23187 plus PMA which produced a significant synergism in thromboxane synthesis, both enzyme activities were substantially less than those in platelets treated with A-23187 alone. In addition to PMA and 1-oleoyl-2-acetyl glycerol induced decreases in both enzyme activities, collagen, a platelet agonist which can activate protein kinase C (Ca2+/phospholipid-dependent enzyme), was also found to cause a concentration-dependent attenuation of both enzyme activities. These results suggest that protein kinase C activation induced by PMA or collagen may cause inactivation of both arachidonoyl-CoA synthase and arachidonoyl-CoA lysophosphatide acyltransferase resulting in inhibition of the reincorporation of arachidonate released by A-23187 and, consequently, greater availability of arachidonate for thromboxane synthesis.  相似文献   

2.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

3.
Formyl-Met-Leu-Phe (FMLP) and platelet activating factor (PAF) stimulated the synthesis of thromboxane B2 (TXB2) and leukotriene B4 (LTB4) to a small degree in human neutrophils. Calcium ionophore A-23187 enhanced synergistically both FMLP and PAF induced eicosanoid synthesis, whereas phorbol ester PMA attenuated PAF but not FMLP stimulated arachidonate metabolism. These results suggest that calcium mobilization may be a rate limiting step in FMLP and PAF induced synthesis of TXB2 and LTB4 and that protein kinase C activation may play a negative regulatory role in PAF stimulated eicosanoid synthesis.  相似文献   

4.
5,8,11,14-eicosatetraynoic acid (ETYA), a widely used inhibitor of cyclooxygenase and lipoxygenase, inhibited the incorporation of 14C-arachidonic acid into cell lipids of the murine thymoma EL4 whereas oleic acid had no effect. Inhibition appeared to result from the ability of ETYA to compete with arachidonic acid for esterification enzymes and to be itself incorporated into cell lipids. The positional specificity for ETYA incorporation was similar to that of arachidonic acid. ETYA, but not oleic acid competed with arachidonate for activation by a selective arachidonoyl CoA synthetase in lymphocytes. This may explain in part the apparent specificity of effects seen on incorporation into whole cells. In addition ETYA, unlike other arachidonate analogs tested previously, caused significant inhibition of the nonselective acyl CoA synthetase in lymphocytes. These results are discussed with respect to the use of ETYA to examine the role of intrinsic arachidonic acid metabolism in cellular processes.  相似文献   

5.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

6.
Human neutrophils synthesize platelet-activating factor (PAF) and leukotriene B4 (LTB4) when stimulated with the Ca2+ ionophore A23187. These processes are enhanced to a variable extent by phorbol 12-myristate 13-acetate (PMA), a direct activator of protein kinase C. The long chain amines sphingosine, stearylamine (Hannun, Y.A., Loomis, C.R., Merrill, A.H., Jr., and Bell, R.M. (1986) J. Biol. Chem. 261, 12604-12609), and palmitoylcarnitine competitively inhibit activation of purified protein kinase C in vitro and inhibit protein kinase C-mediated activation of the respiratory burst in human neutrophils (Wilson, E., Olcott, M.C., Bell, R.M., Merrill, A.H., Jr., and Lambeth, J.D. (1986) J. Biol. Chem. 261, 12616-12623). These amines were found to inhibit A23187-induced PAF and LTB4 synthesis. Inhibition of PAF and LTB4 synthesis occurred in parallel; half-maximal inhibition by sphingosine occurred at 7 microM, with complete inhibition at 15 microM. PMA by itself did not induce the synthesis of PAF or LTB4, although it did enhance PAF and LTB4 synthesis at suboptimal concentrations of A23187. PMA reversed long chain amine inhibition of PAF and LTB4 accumulation. Reversal of the inhibition of PAF and LTB4 accumulation occurred in parallel, was concentration-dependent, and was complete by approximately 3 x 10(-8) M PMA. The inactive 4 alpha-phorbol didecanoate ester did not reverse inhibition at these concentrations. Sphingosine completely prevented the A23187-induced release of [3H]arachidonate and its various metabolites from [3H]arachidonate-labeled cells. PMA, but not 4 alpha-phorbol didecanoate, restored arachidonate release and its metabolism. Therefore, while activation of protein kinase C is not sufficient to induce PAF and LTB4 synthesis, its action appears to be required to couple a rise in intracellular Ca2+ to their synthesis. This coupling occurs at the level of the initial reaction in the production of lipid mediators, a phospholipase A2-like activity that mobilizes the two substrates 1-O-alkyl-sn-glycero-3-phosphocholine and arachidonic acid from complex lipids.  相似文献   

7.
We have found that arachidonic acid rapidly and selectively induces the release of lysosomal enzymes from cytochalasin B treated rabbit peritoneal neutrophils. 5, 8, 11, 14-eicosatetraynoic acid inhibits the arachidonate induced release with an apparent KD of 1.5 × 10?6M. 5,8,11,14-eicosatetraynoic acid (2.5 × 10?5M also inhibits the chemotactic factors and the A23187 induced release in the presence of cytochalasin B but does not affect the degranulation induced by A23187 alone. These observations strongly suggest a role for arachidonate metabolites in rabbit neutrophil physiology.  相似文献   

8.
The addition of the Ca2+ ionophore A23187 to rabbit neutrophils stimulated [14C]arachidonic acid incorporation into phosphatidylinositol and lysosomal enzyme secretion. A significant increase in phosphatidylinositol labelling was observed after a 2 min exposure to 0.1 microM-ionophore A23187. Maximum increases in rate of labelling were obtained with 1 microM-ionophore A23187 within 1 min, declining to basal rates after 15 min. Similarly, maximum rate of enzyme release occurred during the first 2 min of exposure to ionophore and release was essentially complete by 15 min. Threshold and peak ionophore A23187 concentrations for stimulating both processes were identical. In contrast with the specificity of phosphatidylinositol labelling induced by 1 microM-ionophore A23187 in the absence of cytochalasin B, ionophore also significantly stimulated labelling of phosphatidylserine and phosphatidylethanolamine in the presence of cytochalasin B. With a threshold ionophore concentration (0.1 microM), the enhanced incorporation of arachidonate was relatively specific for phosphatidylinositol in cytochalasin-treated cells. Ionophore A23187 did not accelerate labelling of phosphatidylinositol by [14C]acetate or [14C]glycerol, indicating that ionophore A23187 does not stimulate phosphatidylinositol synthesis de novo, although it did promote [14C]palmitate and [32P]Pi incorporation into neutrophil phosphatidylinositol. However, the increase in phosphatidylinositol labelling with these latter precursors was generally slower in onset and much more modest in magnitude than that observed with arachidonic acid. These results support the hypothesis that a Ca2+-dependent phospholipase, which acts on the arachidonate moiety of phosphatidylinositol, is responsible for initiating at least certain of the membrane events coupled to the release of secretory product from the neutrophil.  相似文献   

9.
A plasma membrane fraction isolated from cerebral cortex of control and ethanol-treated rats was used to study the effects of chronic ethanol administration on uptake of arachidonate by membrane phospholipids. Upon incubation of the membranes with [14C] arachidonic acid in the presence of ATP, Mg2+, and CoA, radioactivity was incorporated into all of the phospholipids, although a large proportion of the label was found in phosphatidylinositols (PI, 60%) and phosphatidylcholines (PC, 20%). Rats given ethanol (8–10 g/kg body wt) via intubation in the form of a liquid diet for 4 weeks showed an increase (17–20%) in arachidonate incorporation into PI and PC as compared to phosphatidylethanolamines (PE) and phosphatidylserines (PS). A similar increase in uptake activity was observed at 2 or 24 h upon withdrawal of ethanol, but uptake activity returned readily to that of control level by 72 h. The method described in this study is a sensitive and reliable procedure for monitoring the arachidonoyl turnover activity in neural membranes with respect to chronic ethanol induction and withdrawal.  相似文献   

10.
Aristolochic acid and PGBx, two structurally unrelated, protein-targeted inhibitors of isolated phospholipases A2, are effective antagonists of calcium ionophore A23187-stimulated mobilization of [3H]arachidonate from human neutrophils. We now report that preincubation of neutrophils with oleoylacetylglycerol (OAG, 15 microM) substantially reverses the inhibitory effect of 200 microM aristolochic acid (from 70 to 24% inhibition). Similarly, OAG increases the IC50 for PGBx from 2.5 to greater than 20 microM. The effects of OAG on inhibition by either aristolochic acid or PGBx are dose-dependent, with an ED50 of 2.5 microM. Protection against inhibition by either aristolochic acid or PGBx is also observed with phorbol myristate acetate (PMA, ED50 3 nM), but not 4-alpha-phorbol didecanoate. Aristolochic acid and PGBx do not inhibit PMA-stimulated superoxide generation, and are thus not protein kinase C inhibitors. Furthermore, neither aristolochic acid nor PGBx inhibit diglyceride generation through the phospholipase D/phosphatidate phosphohydrolase pathway. A23187-stimulated [3H]arachidonate mobilization is increased by 20-50% when neutrophils are preincubated with OAG or PMA. The present results indicate that OAG and PMA also modulate the A23187-stimulated [3H]arachidonate mobilization so as to render it less sensitive to inhibitors of phospholipase A2.  相似文献   

11.
Activated by bacterial peptides, phorbol esters, calcium ionophores and other agonists, neutrophils (PMNs) release the proinflammatory mediator, arachidonic acid (AA) via the intervention of phospholipase A(2) (PLA(2)). AA may play an essential role in activation of NADPH-oxidase, which is involved in the generation of superoxide anion by neutrophils. The present study is focused on the involvement of PLA(2) in the respiratory burst developed by PMNs isolated from patients with rheumatoid arthritis (RA). PLA(2) exists in very high levels in diseases such as rheumatoid arthritis and may cause acute inflammatory and proliferative changes in synovial structures. The respiratory burst was evaluated as superoxide anion release, using an amplified chemiluminescence method. The assays were performed using PMNs untreated or treated with different doses of stimulatory reagents (phorbol 12-myristate-13-acetate (PMA), calcium ionophore (A23187)). Our data suggested that PMA stimulated the production of superoxide anion in a dose-response manner, as compared with A23187, which did not induce a significant release of superoxide anion in PMNs-RA. The exogenous addition of AA significantly amplified the superoxide anion release by PMNs-RA stimulated with PMA and to a lesser extent, by PMNs stimulated with A23187. AA has also reversed the inhibitory effect of arachidonyl-trifluorometylketone and E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2H-pyran-2-one (BEL) on the superoxide anion release by PMNs-RA. In conclusion, the differential responses to these two agents suggested that different isoforms of PLA(2) were activated by A23187 or PMA, and support the idea that activation of these different PLA(2) served distinct functions of PMNs. Therefore, the inhibition of PLA(2) enzymes might be of great importance in the immunotherapy of rheumatoid arthritis.  相似文献   

12.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

13.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Eicosapentaenoic acid, which is a major fatty acid in fish oil, previously has been shown to competitively inhibit the cyclooxygenase-catalyzed metabolism of arachidonic acid in platelets. In the present study the effect of eicosapentaenoic acid on the production of leukotriene B via the lipoxygenase pathway in human neutrophils was examined. Eicosapentaenoate was incorporated into complex lipids of neutrophils at the same rate as arachidonate; release of the two homologous fatty acids in response to calcium ionophore A23187 was equivalent and both fatty acids were metabolized to a leukotriene B. The products derived from eicosapentaenoic acid were identified as leukotriene B5 and its stereoisomers. Eicosapentaenoate was a less favorable substrate for leukotriene B5 synthesis (94 ng/10(7) cells/5 min at 20 microM exogenous fatty acid) than arachidonate was for leukotriene B4 (401 ng under the same conditions). However, eicosapentaenoate or an oxygenated product inhibited arachidonate metabolism since at equimolar concentrations of eicosapentaenoate and arachidonate leukotriene B4 production was decreased by 68%. The inhibitory effect occurred at the level of leukotriene A hydrolase. The biological activity of eicosapentaenoate -derived products was tested; leukotriene B5 was found to have only approximately 10% of the potency of leukotriene B4 in inducing the aggregation of neutrophils, and the stereoisomers of leukotriene B5 were inactive. These data suggest that diets enriched in eicosapentaenoic acid affect neutrophils by decreasing the quantity of leukotriene B and by the production of a less potent leukotriene.  相似文献   

15.
The interactions have been studied of a water-soluble, polymeric derivative of prostaglandin B1, PGBX, with human polymorphonuclear leukocytes (PMN). PGBX, which is a potent ionophore of divalent cations, provoked superoxide anion (O2.-) generation and lysosomal enzyme release in cytochalasin B-treated PMN in the presence of extracellular divalent cations (Ca2+, Sr2+, Mg2+, Mn2+, Ba2+). Kinetic and dose-response studies showed that PGBX mimicked te action of ionophore A23187 in PMN. Both ionophores induced superoxide generation and release of enzymes from specific and azurophil granules (lysozyme > beta-glucuronidase) without provoking release of the cytoplasmic marker enzyme lactic dehydrogenase. In contrast, the precursor of PGBX, prostaglandin B1 (PGB1), and arachidonate did not mimic ionophore-induced stimulation of PMN. PGBX induced enzyme release both in the presence of extracellular Ca2+ and Ba2+ (both of which it translocates in model liposomes), whereas A23187 showed specificity for Ca2+ (which it translocates preferentially over Ba2+). These studies indicate that the actions of a water-soluble polymer (PGBX) derived from a naturally occurring prostaglandin (PGB1) on human neutrophils resemble those of a classical ionophore (A23187). Moreover, they provide additional evidence that increments in the intracellular levels of divalent cations may signal stimulus-secretion coupling in human neutrophils.  相似文献   

16.
Rabbit peritoneal neutrophils incorporated [14C]arachidonic acid into seven molecular species of choline-containing phosphoglycerides. These 2-[14C]arachidonoyl species differed with respect to the alkyl ether or acyl residue bound at the sn-1 position; four of the seven were ether-linked. Stimulation with calcium ionophore A23187 induced a proportionate release of arachidonate from all seven molecular species: 40% of the released arachidonate came from alkyl ether species. Thus, 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (GPC) is a significant source of metabolizable arachidonic acid. Since 1-O-alkyl-2-lyso-GPC is the metabolic precussor of platelet activating factor, these results further interrelate pathways forming arachidonate metabolites and platelet activating factor; they also supply a rationale for the observation that both classes of stimuli form concomitantly during cell activation.  相似文献   

17.
The two long-chain alkylamines RO 31-4493 and RO 31-4639 inhibit in a concentration-dependent manner the zymosan-induced release of arachidonic acid, the conversion of arachidonic acid into thromboxane, prostaglandin E2 and D2 and the uptake and incorporation of exogenously added arachidonate into membrane lipids of liver macrophages. The generation of superoxide and the formation of inositol phosphates is not influenced by both agents. These results suggest a rather specific interaction of RO 31-4493 and RO 31-4639 with enzymes involved in the cellular metabolism of arachidonic acid.  相似文献   

18.
A23187 stimulated two enzymatic activities of human neutrophils (polymorphonuclear leukocytes), phospholipase A2 and fatty acyl-CoA acyltransferase, which resulted in a stimulated deacylation/reacylation cycle. The incorporation of fatty acids, other than arachidonic or eicosapentaenoic acid, into diacyl and alkylacyl species of choline phosphoglycerides was stimulated by 10-fold by A23187. These fatty acids were exclusively incorporated into the sn-2 position, and [3H]glycerol labeling showed there was no stimulation of de novo synthesis. A23187 also stimulated fatty acid incorporation into other phospholipids, but de novo synthesis accounted for a portion of this uptake. Inhibitors of protein kinase C prevented the stimulated recycling of phosphatidylcholine, and the simultaneous induction of platelet-activating factor synthesis, by inhibiting phospholipase A2 activation. They inhibited [3H]arachidonate release from prelabeled polymorphonuclear leukocytes, but had no effect on in vitro fatty acyl-CoA acyltransferase or acetyl-CoA acetyltransferase activity. Extracts from A23187-treated cells contained a fatty acyl-CoA acyltransferase, which did not utilize arachidonoyl-CoA, that was 2.3-fold more active than that of control extracts. Phosphatase treatment decreased this stimulated activity by 66%. Thus, A23187 stimulated a phospholipase A2 activity that generated both 1-alkyl and 1-acyl lysophosphatidylcholines. A stimulated acetyltransferase used a portion of the alkyl species for platelet-activating factor synthesis, while the acyl species and residual alkyl species were rapidly reacylated to phosphatidylcholine by a stimulated acyl-transferase. Arachidonate, an eicosanoid precursor, was spared by this process.  相似文献   

19.
To explore possible mechanisms of the arachidonic acid deficiency of the red blood cell membrane in alcoholics, we compared the effect of ethanol and its oxidized products, acetaldehyde and peracetic acid, with other peroxides on the accumulation of [14C]arachidonate into RBC membrane lipids in vitro. Incubation of erythrocytes with 50 mM ethanol or 3 mM acetaldehyde had no effect on arachidonate incorporation. Pretreatment of erythrocytes with 10 mM hydrogen peroxide, 0.1 mM cumene hydroperoxide or 0.1 mM t-butyl hydroperoxide had little effect on [14C]arachidonate incorporation in the absence of azide. However, pretreatment of cells with N-ethylmaleimide, 0.1 mM peracetic acid or performic acid, with or without azide, inhibited arachidonate incorporation into phospholipids but not neutral lipids. In chase experiments, peracetate also inhibited transfer of arachidonate from neutral lipids to phospholipids. To investigate a possible site of this inhibition of arachidonate transfer into phospholipids by percarboxylic acids, we assayed a repair enzyme, arachidonoyl CoA: 1-palmitoyl-sn-glycero-3-phosphocholine acyl transferase (EC 2.3.1.23). As in intact cells, phospholipid biosynthesis was inhibited more by N-ethylmalemide and peracetic acid than by hydrogen peroxide, cumene hydroperoxide, and t-butyl hydroperoxide. Peracetic acid was the only active inhibitor among ethanol and its oxidized products studied and may deserve further examination in ethanol toxicity.  相似文献   

20.
This study has investigated the effect of supplementation of vascular endothelial cells with arachidonate and other polyunsaturated fatty acids on the agonist-stimulated synthesis of platelet activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; 1-alkyl-2-acetyl-GPC). Incubation of calf pulmonary artery endothelial cells for 48 h in medium containing 40 microM arachidonate resulted in a 2-3-fold enhancement of [3H]acetate incorporation into 1-radyl-2[3H]acetyl-GPC in response to either bradykinin or calcium ionophore A23187. The effects of arachidonate supplementation were both dose- and time-dependent, requiring a minimum exogenous arachidonate concentration of 2.5 microM and an incubation time of 4-6 h. Eicosapentaenoate and docosahexaenoate also enhanced the synthesis of 1-radyl-2-[3H]acetyl-GPC, but were less potent than arachidonate; alpha-linolenate, linoleate and oleate were without effect. Although not effective as an agonist, phorbol myristate acetate potentiated A23187- and bradykinin-stimulated synthesis of 1-radyl-2-[3H]acetyl-GPC. The effects of arachidonate supplementation were synergistic with potentiation by phorbol myristate acetate. Sphingosine inhibited agonist-stimulated incorporation of [3H]acetate into 1-radyl-2-[3H]acetyl-GPC both in the presence and absence of PMA. Characterization of the radiolabeled material indicated that the primary product was the acyl analogue of PAF (1-acyl-2-acetyl-GPC) rather than PAF. The results from this study suggest that agonist-stimulated synthesis of 1-radyl-2-acetyl-GPC in vascular endothelial cells is modulated both by cellular fatty acyl composition and activation of protein kinase C. Enrichment of vascular endothelial cells with fatty acids, which are mobilized by agonist-stimulated phospholipase A2, may enhance subsequent deacylation of choline phospholipids and, thus, increase synthesis of both 1-acyl-2-acetyl-GPC and PAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号