首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus subtilis was isolated from flour mill wastes. It produced a thermostable α-amylase in complex media containing starch. Amylase activity was optimal at the exponential phase and was more strongly expressed with sorghum, yam peel and corn starch than soluble potato starch. The enzyme was purified 24-fold to a specific activity of 2200 U mg−1, with a yield of 10%. It yielded a single band when subjected to SDS-PAGE and an apparent molecular mass of 54780 was determined by mass spectrometry. The enzyme, which was optimally active at 80°C and pH 5.6, released saccharides with a polymerisation degree of 1–6 following hydrolysis of yam peel, sorghum and corn starch. Cells of B. subtilis were exposed to ultraviolet irradiation and N-methyl-N′-nitro-N-nitrosoguanidine. Hyperproductive mutants were obtained by these treatments. Received 14 February 1997/ Accepted in revised form 13 August 1997  相似文献   

2.
The hormone-sensitive lipase (HSL) family is comprised of carboxylesterases and lipases with similarity to mammalian HSL. Thermophilic enzymes of this family have a high potential for use in biocatalysis. We prepared and crystallized a carboxylesterase of the HSL family from Sulfolobus?tokodaii (Sto-Est), and determined its structures in the presence and absence of an inhibitor. Sto-Est forms a dimer in solution and the crystal structure suggests the presence of a stable biological dimer. We identified a residue close to the dimer interface, R267, which is conserved in archaeal enzymes of HSL family and is in close proximity to the same residue from the other monomer. Mutations of R267 to Glu, Gly and Lys were conducted and the resultant R267 mutants were characterized and crystallized. The structures of R267E, R267G and R267K are highly similar to that of Sto-Est with only slight differences in atomic coordinates. The dimerized states of R267E and R267G are unstable under denaturing conditions or at high temperature, as shown by a urea-induced dimer dissociation experiment and molecular dynamics simulation. R267E is the most unstable mutant protein, followed by R267G and R267K, as shown by the thermal denaturation curve and optimum temperature for activity. From the data, we discuss the importance of R267 in maintaining the dimer integrity of Sto-Est. Database The atomic coordinates and structural factors have been deposited in the Protein Data Bank with accession numbers of PDB: 3AIK for noninhibited Sto-Est, PDB: 3AIL for DEP-bound, PDB: 3AIM for R267E, PDB: 3AIN for R267G, and PDB: 3AIO for R267K Structured digital abstract ? Sto-Es?and?Sto-Es?bind?by?comigration in gel electrophoresis?(View Interaction:?1,?2) ? Sto-Es?and?Sto-Es?bind?by?x-ray crystallography?(View interaction).  相似文献   

3.
The -galactosidase (EC 3.2.1.32) of Corynebacterium murisepticum (inducible by lactose and galactose) was purified by successive column chromatography on Sephadex G-200, DEAE-Sephadex A-50 and DEAE-cellulose (DE52). The enzyme was found to be a dimer of identical subunits of molecular mass 100,000 daltons. The K m values of the enzyme for the substrates lactose and o-nitrophenyl--d-galactopyranoside (ONPG) are 16.7 mM and 4.4 mM, respectively, indicating, its low affinity for the substrates. The Ouchterlony immunodiffusion method exhibited immunological homogeneity of the enzyme preparation. The catalytic site of the enzyme does not take part in antigen-antibody reaction.  相似文献   

4.
A β-N-acetylhexosaminidase [EC 3.2.1.30] has been purified ~98-fold from an extract of the digestive organs of Saxidomus purpuratus by using ammonium sulfate fractionation, and chromatography on Toyopearl HW-50, CM-cellulose, and Sepharose 4B. The purified enzyme, the molecular weight of which was estimated to be ~66,000 by gel filtration, was composed of two sub-units of molecular weight 30,000 as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The purified enzyme had a pH optimum of 3.8 and an optimum temperature of 55°, and its activity was enhanced ~2-fold in the presence of 0.1m sodium chloride. The Michaelis constants toward p-nitrophenyl 2-acetamido-2-deoxy-β-d-glucoside and -galactoside were 1.2 × 10?4 and 1.3 × 10?4m, respectively.  相似文献   

5.
An -tocopherol-binding protein has been isolated and purified from rabbit heart cytosol. The purified protein had an apparent molecular mass of 14,200, as derived from SDS-PAGE. The content of the protein in rabbit heart was around 11.8 g per g of tissue. The binding of -tocopherol to the purified protein was rapid, reversible, and saturable. Neither nor tocopherol could displace the bound -tocopherol from the protein, suggesting a high specificity for -tocopherol. -Tocopherol-binding protein did not bind oleate. Transfer of -tocopherol from liposomes to mitochodria was stimulated 8-fold in the presence of the binding protein, suggesting that this protein may be involved in the intracellular transport of -tocopherol in the heart.  相似文献   

6.
Intact viable 13762 mammary-adenocarcinoma ascites cells hydrolyse added ATP. The localization of hydrolysis product and inactivation by the slowly penetrating chemical reagent diazotized sulphanilic acid indicate that this ATPase is at the external surface of the cell. A number of features differentiate this enzyme from mitochondrial, myosin and cation-transport ATPases. It is stimulated by either Ca2+ or Mg2+ and has little or no activity in their absence. It is insensitive to ouabain, oligomycin and azide. It is the major ATPase activity found in homogenates of gently disrupted 13762 cels. The ATPase activity is inhibited at high substrate concentrations and shows an apparent stimulation by concanavalin A in isolated membranes, but not in intact cells. The stimulation by concanavalin A results predominantly from a release from substrate inhibition.  相似文献   

7.
A thermo-labile antigen (TLA) on the yeast cell surface was isolated from a yeast cell autolyzate and purified to a homogeneous state by chromatography on an immunoadsorbent affinity column. The molecular weight of TLA was about 1.45 x 105 on SDS-polyacrylamide gel electrophoresis and about 1.5 x l05 on gel chromatography on Sephadex G-200. The TLA contained 74.5% protein and 25.5% sugar. It was characterized by high contents of glycine, glutamic acid, serine and aspartic acid. Half-cystine, methionine, histidine and arginine were not found. The sugar moiety was composed of galactose, mannose, N-acetylglucosamine and fucose. The antigenic determinant of TLA was distinct from that of cell wall mannan in the Ouchterlony immunodiffusion test. No precipitin line against anti-TLA serum was observed, when TLA was heated at 90°C for 10 min. Oxidation with periodate had little effect on antigenicity, but digestion with Pronase or treatment with protein denaturants resulted in loss of the antigenicity. These results suggest that the protein moiety plays an important role as the antigenic determinant of TLA. Moreover, the antiserum specific to TLA agglutinated fresh yeast cells, and the distribution of TLA was apparent on the yeast cell surface by immunofluorescence staining. These findings suggest that TLA molecules were exposed on the outer surface of the yeast cell wall.  相似文献   

8.
Red algae (Rhodophyceae) are photosynthetic eukaryotes that accumulate starch granules in the cytosol. Starch synthase activity in crude extracts of Gracilaria tenuistipitata Chang et Xia was almost 9-fold higher with UDP[U-14C]glucose than with ADP[U-14C]glucose. The activity with UDP[U-14C]glucose was sensitive to proteolytic and oxidative inhibition during extraction whilst the activity with ADP[U-14C]glucose appeared unaffected. This indicates the presence of separate starch synthases with different substrate specificities in G. tenuistipitata. The UDPglucose: starch synthase was purified and characterised. The enzyme appears to be a homotetramer with a native Mr of 580 kDa and displays kinetic properties similar to other α-glucan synthases such as stimulation by citrate, product (UDP) inhibition and broad primer specificity. We propose that this enzyme is involved in cytosolic starch synthesis in red algae and thus is the first starch synthase described that utilises UDPglucose in vivo. The biochemical implications of the different compartmentalisation of starch synthesis in red algae and green algae/plants are also discussed. Received: 29 January 1999 / Accepted: 11 March 1999  相似文献   

9.
Glutathione S-transferases (GSTs) are involved in the phase II detoxification metabolism. To provide a molecular basis for their use as biomarkers of pollution, cytosolic GSTs from the freshwater clam Corbicula fluminea have been purified by glutathione-Sepharose affinity chromatography, anion-exchange chromatography (AEC) and reversed-phase (RP) HPLC. SDS-PAGE of visceral mass (VM) affinity-purified extracts revealed four subunits with apparent molecular masses (MW) of 30.2, 29.2, 28.5 and 27.2 kDa. Analysis by non-denaturing PAGE revealed three acidic dimeric proteins with apparent MW of 64, 55 and 45 kDa, named GSTc1, GSTc2 and GSTc3, respectively, based on their elution order by AEC. Only GSTc2 and GSTc3 exhibited GST activity towards 1-chloro-2,4-dinitrobenzene. A tissue-specific subunit pattern was obtained by RP-HPLC of affinity-purified extracts from VM and gills (GI): three major peaks were resolved, one of which was common to both tissues. MW of each VM subunit was determined by electrospray ionisation-mass spectrometry: 23602+/-1 Da for the major subunit and 23289+/-1 Da for the minor ones. Immunoblot analysis revealed all subunits from both tissues were related to the Pi-class GSTs. In addition, minor VM subunits were slightly related to the Mu-class ones. The interest of such molecular studies in biomonitoring programs is discussed.  相似文献   

10.
1. alpha-Mannosidase from the limpet, Patella vulgata, was purified nearly 150-fold, with 40% recovery. beta-N-Acetylglucosaminidase was removed from the preparation by treatment with ethanol. The final product was virtually free from beta-galactosidase. 2. Limpet alpha-mannosidase was assayed at pH3.5 and at this pH it was necessary to add Zn(2+) for full activity. At pH5, the enzyme had the same activity in the presence or absence of added Zn(2+). 3. On incubation at acid pH, the enzyme underwent reversible inactivation, which was prevented by adding Zn(2+). 4. EDTA accelerated inactivation and the addition of Zn(2+) at once restored activity. No other cation was found to reactivate the enzyme. 5. Cl(-) had an unspecific effect on hydrolysis by limpet alpha-mannosidase. It increased the rate of reaction with substrate. The anion did not prevent or reverse inactivation by EDTA. 6. It is concluded that alpha-mannosidase is a metalloenzyme or enzyme-metal ion complex, dissociable at the pH of activity, and that it requires Zn(2+) specifically.  相似文献   

11.
The cultivation of the hyperthermophilic archaeobacterium Pyrococcus woesei on starch under continuous gassing (80% H2:20% CO2) caused the formation of 250 U/l of an extremely thermoactive and thermostable -amylase. In a complex medium without elemental sulphur under 80% N2 and 20% CO2 atmosphere enzyme production could be elevated up to 1000 U/l. Pyrococcus woesei grew preferentially on poly-and oligosaccharides. The amylolytic enzyme formation was constitutive. Enzyme production was also observed in continuous culture at dilution rates from 0.1 to 0.4 h-1. A 20-fold enrichment of -amylase was achieved after adsorption of the enzyme onto starch and its desorption by preparative gel electrophoresis. The -amylase consisted of a single subunit with a molecular mass of 70 000 and was catalytically active at a temperature range between 40°C and 130°C. Enzymatic activity was detected even after autoclaving at a pressure of 2 bars at 120°C for 5 h. The purified enzyme hydrolyzed exclusively -1,4-glycosidic linkages present in glucose polymers of various sizes. Unlike many -amylases from anaerobes the enzyme from P. woesei was unable to attack short chain oligosaccharides with a chain length between 2 and 6 glucose units.  相似文献   

12.
β-N-Acetylaminoglucohydrolase (β-2-acetylamino-2-deoxy-D-glucoside acetylaminodeoxyglucohydrolase, EC 3.2.1.30) was extracted from malted barley and purified. The partially purified preparation was free from α-and β-glucosidase, α- and β-galactosidase, α-mannosidase and β-mannosidase. This preparation was free from α-mannosidase only after affinity chromatography with p-amino-N-acetyl-β-D-glucosaminidine coupled to Sepharose. The enzyme was active between pH 3 and 6.5 and had a pH optimum at pH 5. A MW of 92000 was obtained by sodium dodecyl sulfate-acrylamide gel electrophoresis and a sedimentation coefficient of 4.65 was obtained from sedimentation velocity experiments. β-N-Acetylaminoglucohydrolase had a Km of 2.5 × 10?4 M using the p-nitrophenyl N-acetyl β-D-glucosaminidine as the substrate.  相似文献   

13.
1. β-Amylase obtained by acidic extraction of soya-bean flour was purified by ammonium sulphate precipitation, followed by chromatography on calcium phosphate, diethylaminoethylcellulose, Sephadex G-25 and carboxymethylcellulose. 2. The homogeneity of the pure enzyme was established by criteria such as ultracentrifugation and electrophoresis on paper and in polyacrylamide gel. 3. The pure enzyme had a nitrogen content of 16·3%, its extinction coefficient, E1%1cm., at 280mμ was 17·3 and its specific activity/mg. of enzyme was 880 amylase units. 4. The molecular weight of the pure enzyme was determined as 61700 and its isoelectric point was pH5·85. 5. Preliminary examinations indicated that glutamic acid formed the N-terminus and glycine the C-terminus. 6. The amino acid content of the pure enzyme was established, one molecule consisting of 617 amino acid residues. 7. The pH optimum for pure soya-bean β-amylase is in the range 5–6. Pretreatment of the enzyme at pH3–5 decreases enzyme activity, whereas at pH6–9 it is not affected.  相似文献   

14.
The receptor like PTPase, PTP, displays structural similarity in its extracellular segment to members of the immunoglobulin superfamily of cell adhesion molecules. The full length form of PTP (200 kD) and a construct expressing only the intracellular PTPase domain-containing segment *80 kD) were expressed in the baculovirus/Sf9 cell system, purified and characterized. Full length PTP was membrane associated while the truncated form was recovered in the soluble fraction. PTP preferentially dephosphorylated a reduced carboxamidomethylated and maleylated derivative of lysozyme (RCML) over other tyrosine phosphorylated substrates such as myelin basic protein (MBP) or the synthetic peptide EDNDYINASL. The enzymatic properties of the soluble, truncated form of the enzyme were examined in detail. The pH optimum was 7.5. It dephosphorylated RCML with a Km of 400 nM and a Vmax of 725 nmol/min/mg. This form of the enzyme was 2 fold more active than full length PTP. Trypsinization of the full length form inhibited activity. Vanadate and molybdate, potent tyrosine phosphatase inhibitors, abolished activity of the enzyme. Zn++ and Mn++ ions, polylysine, poly-glu/tyr, and spermine were also inhibitory.  相似文献   

15.
Li X  Pei J  Wu G  Shao W 《Biotechnology letters》2005,27(18):1369-1373
For the first time, a β-glucosidase gene from the edible straw mushroom, Volvariella volvacea V1-1, has been over-expressed in E. coli. The gene product was purified by chromatography showing a single band on SDS-PAGE. The recombinant enzyme had a molecular mass of 380 kDa with subunits of 97 kDa. The maximum activity was at pH 6.4 and 50 °C over a 5 min assay. The purified enzyme was stable from pH 5.6–8.0, had a half life of 1 h at 45 °C. The β-glucosidase had a Km of 0.2 mM for p-nitrophenyl-β-D-glucopyranoside.  相似文献   

16.
A β-glucuronidase has been isolated from pig kidney and purified 1600-fold using sodium desoxycholate precipitation, ammonium sulphate fractionation, heat treatment and chromatography on Sephadex G200, DEAE-cellulose (DE-52) and hydroxyapatite. The enzyme activity was assayed using oestrone 3-glucuronide as substrate; the final specific activity was 254 nmol oestrone/min/mg of protein. The purified enzyme showed apparent homogeneity in gel filtration and polyacrylamide gel electrophoresis. The pig kidney β-glucuronidase has a single pH optimum of 4.0–4.4 in acetate- and 5.4 in citrate-buffer; an activation energy of 16,800 cal/mol and a molecular weight of 275,000 were estimated. The KM for oestrone 3-glucuronide was 22.6 μM. The enzyme was not inhibited by N-ethylmaleimide nor by dithioerythritol, however, it was strongly inhibited by Hg2+. Oestradiol-17β 3-glucuronide and oestriol 3-glucuronide acted as competitive inhibitors, whereas oestradiol-17β 17β-glucuronide, oestriol 16α-glucuronide, testosterone 17-glucuronide and cholesteryl 3-glucuronide were uncompetitive, pregnanediol 3-glucuronide was noncompetitive, and Cortisol 21-glucuronide gave a mixed type inhibition. The synthetic β-d-glucuronides of phenolphthalein, p-nitrophenol, naphthol, 6-bromo-naphthol and methylumbelliferone all inhibited the hydrolysis of oestrone 3-glucuronide; the inhibition was of a more complex type than simple competitive inhibition.  相似文献   

17.
In vertebrates, mannose 6-phosphate receptors [MPR300 (Mr 300 kDa) and MPR46 (Mr 46 kDa)] are highly conserved transmembrane glycoproteins that mediate transport of lysosomal enzymes to lysosomes. Our studies have revealed the appearance of these putative receptors in invertebrates such as the molluscs and deuterostomes. Starfish tissue extracts contain several lysosomal enzyme activities and here we describe the affinity purification of α-fucosidase. The purified enzyme is a glycoprotein that exhibited a molecular mass of ∼56 kDa in SDS-PAGE under reducing conditions. It has also cross-reacted with an antiserum to the mollusc enzyme suggesting antigenic similarities among the two invertebrate enzymes. LC–MS/MS analysis of the proteolytic peptides of the purified enzyme in combination with de novo sequencing allowed us to do partial amino acid sequence determination of the enzyme. These data suggest that this invertebrate enzyme is homologous to the known mammalian enzyme. The purified enzyme exhibited a mannose 6-phosphate dependent interaction with the immobilized starfish MPR300 protein. Our results demonstrate that the lysosomal enzyme targeting pathway is conserved even among the invertebrates.  相似文献   

18.
β-N-Acetvlhexosaminidase (EC 3.2.1.52) was purified from the liver of a prawn, Penaeus japonicus, by ammonium sulfate fractionation and chromatography with Sephadex G-100, hydroxylapatite, DEAE-Cellulofine, and Cellulofine GCL-2000-m. The purified enzyme showed a single band keeping the potential activity on both native PAGE and SDS–PAGE. The apparent molecular weight was 64,000 and 110,000 by SDS–PAGE and gel filtration, respectively. The pI was less than 3.2 by chromatofocusing. The aminoterminal amino acid sequence was NH2-Thr-Leu-Pro-Pro-Pro-Trp-Gly-Trp-Ala-?-Asp-Gln-Gly-VaI-?-Val-Lys-Gly-Glu-Pro-. The optimum pH and temperature were 5.0 to 5.5 and 50°C, respectively. The enzyme was stable from pH 4 to 11, and below 55°C. It was 39% inhibited by 10mM HgCl2.

Steady-state kinetic analysis was done with the purified enzyme using N-acetylchitooligosaccharides (GlcNAcn, n = 2 to 6) and p-nitrophenyl N-acetylchitooligosaccharides (pNp-β-GlcNAcn, n= 1 to 3) as the substrates. The enzyme hydrolyzed all of these substrates to release monomeric GlcNAc from the non-reducing end of the substrate. The parameters of Km and kcat at 25°C and pH 5.5 were 0.137 mM and 598s–1 for pNp-β-GlcNAc, 0.117 mM and 298s–1 for GlcNAc2, 0.055 mM and 96.4s–1 for GlcNAc3, 0.044 mM and 30.1 s–1 for GlcNAc4, 0.045 mM and 14.7 s–1 for GlcNAc5, and 0.047 mM and 8.3 s–1 for GlcNAc6, respectively. These results suggest that this β-N-acetylhexosaminidase is an exo-type hydrolytic enzyme involved in chitin degradation, and prefers the shorter substrates.  相似文献   

19.
A soluble α-glucosidase presumably involved in the general carbohydrate metabolism was purified from E. histolytica trophozoites by a three-step procedure consisting of ion exchange, size exclusion and adsorption chromatographies in columns of Mono Q, Sepharose CL-6B and hydroxyapatite, respectively. After the last step, the enzyme was enriched about 673-fold over the starting material with a yield of 18%. SDS-PAGE revealed the presence in the purified preparations of two polypeptides of comparable intensity exhibiting molecular weights of 43 and 68 kDa. These results and the molecular weight of 243 kDa determined by gel filtration, suggest that the native enzyme is a heterotetramer consisting of two copies of each subunit. Some properties were investigated to determine the role of this activity in glycoprotein processing. Analysis of linkage specificity using a number of substrates indicated a preferential hydrolysis of isomaltose (α1,6) with much less activity on nigerose (α1,3) and maltose (α1,4). Trehalose (α1,1), kojibiose (α1,2) and cellobiose (β1,4) were not cleaved at all. As expected, isomaltose competed away hydrolysis of 4-methylumbelliferyl-α-D-glucoside with a higher efficiency than nigerose and maltose. Hydrolysis of the fluorogenic substrate was competitively inhibited by glucose and 6-deoxy-D-glucose with comparable Ki values of 0.23 and 0.22 mM, respectively. Sensitivity of the enzyme to the α-glucosidase inhibitors 1-deoxynojirimycin, castanospermine and australine largely depended on the substrate utilized to determine activity. 1-Deoxynojirimycin and castanospermine inhibited isomaltose hydrolysis in a competitive manner with Ki values of 1.2 and 1.5 μM, respectively. The properties of the purified enzyme are consistent with a general glycosidase probably involved in glycogen metabolism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
-Galactosidase from B. coagulans strain L4 is produced constitutively, has a mol. wt. of 4.3×105 and an optimal temperature of 55°C. The optimal pH at 30°C is 6.0 whereas at 55°C it is 6.5. The energy of activation of enzyme activity is 41.9 kJ/mol (10 kcal/mol). No cations are required. The Km with ONPG as substrate is 4.2–5.6mm and with lactose is 50mm. The Ki for inhibition by galactose is 11.7–13.4mm and for dextrose is 50mm. Galactose inhibited competitively while dextrose inhibited noncompetitively. The purified and unprotected enzyme is 70% destroyed in 30 min at 55°C whereas in the presence of 2 mg/ml of BSA 42% of the activity is destroyed in 30 min at 55°C. An overall purification of 75.3-fold was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号