首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In asynchronous RTG-2 cell cultures infected with infectious pancreatic necrosis (IPN) virus, inhibition of cellular DNA synthesis, but not protein synthesis, was detected 5 to 6 h postinfection and was 80 to 90% complete by 7 to 8 h. Inhibition of DNA synthesis was largely abolished by UV irradiation of the virus. Sedimentation analyses of phenol-extracted DNA indicated that native cellular DNA was not degraded during infection. Sedimentation on alkaline sucrose gradients of DNA from cells pulsed with radioactive thymidine for varying periods indicated that elongation of nascent DNA chains proceeded normally in infected cells. These and previous results suggest that IPN virus infection results in a reduction of the number of chromosomal sites active in DNA synthesis but does not affect the rate of polymerization at active sites. Cells synchronized with excess thymidine and hydroxyurea and infected with virus at the time of release from the block demonstrated an inhibition of DNA synthesis 3 h postinfection. Cells infected 4 h prior to release continued to synthesize normal amounts of DNA for 1 to 2 h after release. These results indicated that DNA synthesis in early synthetic phase is relatively insensitive to inhibition by IPN virus.  相似文献   

2.
Effect of tryptophan on isolated hepatocytes of rats   总被引:1,自引:0,他引:1  
The addition of tryptophan to adult rat hepatocyte cultures stimulated DNA synthesis. The increase in DNA synthesis as measured by 3H-thymidine incorporation into DNA was observed on treatment of the cultures with tryptophan for 48 h but also as short as for 6 h in comparison with control cultures. An increase was also apparent at 30 h which was maintained for up to 48 h post treatment with tryptophan. The increase in DNA synthesis by tryptophan cannot be attributed to cell injury or to increased DNA degradation. Of the degradative enzymes added after harvesting the hepatocytes, only DNase decreased incorporation of 3H-thymidine. The observed effect was specific for tryptophan since treatment with kynurenine, isoleucine, methionine or serine failed to show a significant effect. Pretreatment of cultured hepatocytes with hydroxyurea prevented the tryptophan stimulated increase in DNA synthesis suggesting that the latter was due to replicative and not to reparative DNA synthesis. Experiments performed with the addition of diethylnitrosamine also alluded to tryptophan's role in replicative DNA synthesis. The mechanism of tryptophan-induced DNA synthesis is discussed.  相似文献   

3.
Primary cultures of newborn rat cerebrum, which are composed of glial cells (principally astroglia), were used for examining the relationship between dolichol-linked glycoprotein synthesis and DNA synthesis in developing cerebral glia. The cells were synchronized by reducing the content of fetal calf serum in the culture medium from 10 to 0.1% (vol/vol) for 48 h between days 4 and 6 in culture. Reversal of the quiescent state by return of the cultures to 10% serum causes a marked increase in DNA synthesis 12-24 h later. A sharp increase in glycoprotein synthesis (incorporation of [3H]mannose) occurred in the first 12 h after serum repletion, preceding the increase in DNA synthesis. Tunicamycin, an inhibitor of the dolichol-linked pathway to glycoprotein synthesis at the first committed step in oligosaccharide formation, promptly and completely prevented the increase in glycoprotein synthesis and, in addition, the subsequent increase in DNA synthesis. The effects of tunicamycin on glycoprotein and DNA syntheses were reversible, and no comparable effect on total protein synthesis was observed. When tunicamycin was added only during a temporally circumscribed period in G1, i.e., from 3 to 9 h after serum repletion, the increase in DNA synthesis between 12 and 24 h after repletion was still markedly inhibited, i.e., to approximately 45% of the value in untreated cultures. The data thus show that there is a requirement for dolichol-linked glycoprotein synthesis for the subsequent occurrence of DNA synthesis and that this requirement is expressed late in the G1 phase of the cell cycle.  相似文献   

4.
Experiments were carried out to determine whether replication of alkylated DNA could be involved in the initiation of hepatocellular carcinoma which results from a single administration of dimethylnitrosamine (DMN) given after partial hepatectomy. The incidence of tumours is higher when DMN is given during the wave of DNA synthesis induced by the operation than when given in the early prereplicative stage. Therefore the alkylation of DNA in the regenerating liver by DMN given at these times and the effect of DMN on DNA synthesis were investigated. The extent, duration and pattern of alkylation of DNA, including the formation of 0-6-methylguanine, were similar whether DMN was given in the early pre-replicative stage (6 h after the operation) or during the period of DNA synthesis (at 24 h). DMN given a 6 h very greatly reduced the wave of DNA replication which would otherwise have ensued. When given at 24 h, by which time DNA synthesis was already taking place, DMN reduced the rate of incorporation of (-3H)thymidine after 1-2 h delay. However, in neither case was DNA synthesis reduced to the level occurring in normal intact liver. Treatment with diethylnitrosamine (DEN) at 6 h or at 24 h had a similar effect to DMN on the wave of DNA replication induced by partial hepatectomy. Methyl methanesulphonate (MMS given in the early pre-replicative stage delayed the wave of DNA synthesis by about 8 h, but when it did take place the extent of synthesis was as great as in untreated animals. When given during the period of DNA replication, MMS rapidly reduced the rate of synthesis. As in the case of the nitrosamines, synthesis was not reduced to the level occuring in normal intact animals. The difference from the nitrosamines lies in the nature of the alkylated bases formed in DNA. The fact that a single treatment with DMN induces cancer in partially hepatectomised animals but not in intact adult animals is not considered to be due to a gross difference in the nature of the alkylation of DNA. The experiments described support the concept that replication of DNA containing bases which are likely to mispair during replication may be necessary to 'fix' the lesion and thus cause a permanent inheritable change in the genetic material.  相似文献   

5.
Vinyl chloride monomer used in the manufacture of polyvinyl chloride is a chemical of increasing industrial importance but has recently been incriminated as a carcinogen, producing a mutagenic effect after being metabolized to active metabolites. The initial effect of vinyl chloride monomer and two of its presumed metabolites, chloracetaldehyde and chloroethylene oxide, on DNA synthesis was investigated in vivo in regenerating rat liver. The established control curve for the DNA synthesis rate after partial hepatectomy demonstrated two waves of synthetic activity at 21 and 30 h. Vinyl chloride, injected intravenously immediately on completion of the operation, depressed the first wave of DNA synthesis by 49.6%. The second peak of DNA synthetic activity was similar to that of the control. Chloracetaldehyde and chloroethylene oxide both produced similar effects on the first wave of DNA synthesis after partial hepatectomy, inhibiting the DNA synthesis rate by approx. 50%. After a regenerating period of 27 h, however, they produced very different effects, chloroethylene oxide raising the control DNA synthesis rate at 30 h by 49% while chloracetaldehyde tended to desynchronize the well-defined second peak of the control. The test compounds have been compared to literature reports of the inhibitory effects of various carcinogens on DNA synthesis.  相似文献   

6.
ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.  相似文献   

7.
Summary This study provides information on the rates of DNA synthesis, sites of DNA synthesis, and DNA content of the avian salt gland during the osmoticstressing (plasma membrane synthesis) and destressing (plasma membrane turnover) cycle, in an effort to better understand the relationship of cell turnover to the initial events in plasma membrane amplification, differentiation, and turnover. The rate of DNA synthesis increases 12–24 h after the onset of osmotic stress, is maximal at about 24 h of osmotic stress, and decreases thereafter in fully stressed and destressed glands. The maximum DNA and protein content, and the maximum protein/DNA ratio are obtained after about 3 days of stress. Autoradiograms show that at 24 h of stress 70–80% of DNA synthesis occurs in connective tissue cells and 20–30% in parenchymal cells, but by 6 days of stress, synthesis occurs about equally in these cell groups. Because destressing is characterized by a large decrease in plasma membrane and in glandular protein, but by little DNA turnover or loss, the loss of plasma membrane is likely due to some type of cell dedifferentiation rather than cell turnover.  相似文献   

8.
Cytoplasmic viral DNA synthesis can be followed efficiently by [3H]thymidine labeling of cells exogenously infected with Moloney murine leukemia virus. Both the negative and the positive strands of viral DNA reached their maximal level in the cytoplasm at 3.5 h postinfection. Interferon treatment before infection markedly reduced the amount of viral DNA formed during the first 3.5 h, but led to a second major wave of viral DNA synthesis, peaking at 7.5 h postinfection. No such late cytoplasmic DNA synthesis occurred in the untreated control. Inhibition of protein synthesis by cycloheximide, on the other hand, stimulated cytoplasmic viral DNA synthesis during the first 3.5 h.  相似文献   

9.
Stimulation of bone formation by prostaglandin E2   总被引:5,自引:0,他引:5  
We examined the effect of prostaglandin E2 (PGE2), in the presence or absence of cortisol, on bone formation in 21-day fetal rat calvaria maintained in organ culture for 24 to 96 h. [3H]Thymidine and [3H] proline incorporation were used to assess DNA and collagen synthesis, respectively. Changes in dry weight and DNA content were assessed after 96 h. PGE2 (10(-7) M) stimulated both DNA and collagen synthesis in calvaria. The effect on DNA synthesis was early (24 h), transient and limited to the periosteum. Collagen synthesis was stimulated at a later time (96 h), predominantly in the central bone. Cortisol (10(-7) M) inhibited DNA and collagen synthesis. The addition of PGE2 reversed the inhibitory effects of cortisol on DNA synthesis and content and increased collagen synthesis in central bone to levels above control untreated cultures. We conclude that PGE2 has stimulatory effects on bone formation and can reverse the inhibitory effects of cortisol. Hence the effects of cortisol may be mediated in part by their ability to reduce the endogenous production of prostaglandins.  相似文献   

10.
How viral infections affect host cell mitochondrial functions is largely unknown. In this study, uptake of radiolabeled precursors was used to assess how a herpes simplex virus type 1 (HSV 1) infection influences synthesis of macromolecules comprising Vero cell mitochondria. Total macromolecular synthesis in infected cells was determined for comparative purposes. Mitochondrial and total cellular DNA syntheses were approximately halved at 1-2.5 h postinfection (PI). Mitochondrial DNA synthesis in infected cells then rose to 3.5-fold that in control cells at 3-4.5 h PI. Total DNA synthesis in infected cells also rose, but more slowly, reaching threefold that for control cells at 5-6.5 h PI. Mitochondrial and total RNA synthesis in infected cells were both decreased by approximately 40% at 1-3 h PI. Over the next 4 h, total RNA synthesis in infected cells slowly continued to decrease, while that in mitochondria recovered to control levels. Synthesis of mitochondrial proteins in infected cells decreased progressively, dropping to about 60% of control levels by 5-6.5 h PI. With the metabolic inhibitors ethidium bromide and cycloheximide, it was determined that nuclear DNA and mitochondrial DNA and mitochondrial DNA directed synthesis of mitochondrial proteins were each partially inhibited in infected cells. Total cellular protein synthesis was decreased by 30% at 1-2.5 h PI and then recovered to control levels by 5-6.5 h PI. Finally, phospholipid synthesis in mitochondria from infected cells was elevated 2.3-fold at 1-5 h PI, but dropped to 14% below control levels during 4-8 h PI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We investigated the effects of microbial protease inhibitors, in particular the aminopeptidase inhibitor bestatin, on DNA synthesis and cell division induced by epidermal growth factor (EGF) in hepatocytes. Although bestatin did not significantly affect binding of EGF to hepatocytes, it inhibited EGF-induced DNA synthesis and cell division. DNA synthesis in rat hepatocytes was maximal 24-26 h after EGF addition to the medium. The time required for maximal DNA synthesis was not affected if bestatin was removed less than 12 h after addition, but synthesis was partially inhibited if bestatin was added to the medium several hours after EGF addition, depending on the time of bestatin addition. Our results suggest that bestatin arrests the new cell cycle induced by EGF at about 12 h after the initiation. Considering also our results obtained by employing other protease inhibitors, we concluded that specific proteases play important roles in hepatocyte DNA synthesis and cell division induced by EGF.  相似文献   

12.
Effects of hydroxyurea on DNA synthesis in hairless mouse epidermis   总被引:2,自引:0,他引:2  
The effect of 5 mg hydroxyurea (HU) i.p. on epidermal DNA synthesis in female hairless mice was assessed by measuring labelling indices and specific activity after 3HTdR injection, flow cytometry (FCM) and cell sorting of prelabelled basal cells. HU causes an almost immediate block in DNA synthesis lasting until 2-2.5 h. During this time the fraction of cells in S remains stationary, 1.20 of normal. From 2.5 to 12.5 h DNA synthesis is resumed, but in cells recruited from G1 or G0. The HU-blocked cells do not move out of S until after 12.5 h. Hence, from 2.5 to 12.5 h, the fraction of cells in S increases to 2.5 of normal, which means that entry into S is open, but exit is blocked. From 12.5 h flux through S is high. The blocked cells are now released and the fraction of cells in S falls to 0.7 of normal at 24.5 h. At 36.5 h a probable new wave of DNA synthesis is indicated. The results also show that 3HTdR is available for at least 20 min after i.p. injection. The consequences of these results for the interpretation of the effect of HU pretreatment on methylnitrosourea skin carcinogenesis are discussed.  相似文献   

13.
3-Aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase, is a potent inducer of sister chromatid exchanges (SCEs). Because of the possible relation between SCEs and DNA synthesis, the effects of 3AB on DNA synthesis and cell cycle progression in Chinese hamster ovary (CHO) cells were examined. Unlike all other SCE-inducing agents whose effects on DNA synthesis have been studied, short term exposures (30–120 min) of 3AB did not inhibit the overall rate of DNA synthesis and this result was independent of the amount of bromodeoxyuridine (BrdU) in the DNA. Longer exposure times (>24 h) did result in an extended S phase, but this was not due to an effect on the rate of DNA chain elongation. 3AB also delayed the entry of cells into S phase. The overall cell cycle delay was dose dependent, approaching 9 h after a 54 h exposure to 10 mM 3AB. Earlier reports that 3AB is neither mutagenic nor cytotoxic were confirmed. Thus 3AB acts to increase SCE frequency by a mechanism distinct from that which causes cytotoxicity and mutagenicity, and does not involve any inhibition in the rate of DNA chain growth.  相似文献   

14.
A study was made of the rate of semi-conservative DNA synthesis in asynchronous UV-resistant (clone V79) and UV-sensitive clones (VII and XII) of Chinese hamster cells after UV-irradiation. In all 3 clones studied, UV-irradiation (5-30 J/m2) induced a decrease in the rate of DNA synthesis during the subsequent 1-2 h. In the resistant clone (V79) recovery of DNA synthesis rate started after the first 2 h post-irradiation (5 J/m2) and by the 3rd hour reached its maximum value, which constituted 70% of that observed in control, non-irradiated cells. The UV-sensitive mutant clones VII and XII showed no recovery in the rate of DNA synthesis during 6-7 h post-irradiation. The results obtained show that the survival of cells is correlated with the ability of DNA synthesis to recover after UV-irradiation in 3 clones studied. The observed recovery of UV-inhibited DNA synthesis in mutant clones may be due to certain defects in DNA repair.  相似文献   

15.
Paracetamol was studied for possible genotoxic effects in V79 Chinese hamster cells. Paracetamol (0.5 mM for 30 min) reduced the rate of DNA synthesis in exponentially growing V79 cells to about 50% of control. A further decrease in the DNA synthesis was seen during the first 30 min after termination of paracetamol exposure. Paracetamol (3 and 10 mM for 2 h) caused a small increase in DNA single-strand breaks, as measured by the alkaline elution technique. After 16 h elution, the amount of DNA retained on the filters was 79 and 70% of controls in cells treated with 3 and 10 mM paracetamol respectively. No indication of DNA damage was seen in measuring the effect of paracetamol (0.25-10 mM for 2 h) on unscheduled DNA synthesis in growth-arrested cultures of V79 cells. At the highest concentrations (3 and 10 mM paracetamol), decreased unscheduled DNA synthesis was observed. Also UV-induced DNA-repair synthesis was inhibited by 3 and 10 mM paracetamol. DNA-repair synthesis was, however, inhibited at a much higher concentration than that inhibiting replicative DNA synthesis. The number of sister-chromatid exchanges (SCE) increased in a dose-dependent manner on 2 h exposure to paracetamol from 1 mM to 10 mM. At the highest dose tested (10 mM), the number of SCE increased to 3 times the control value. Co-culturing the V79 cells with freshly isolated mouse hepatocytes had no further effect on the paracetamol induced sister-chromatid exchanges. The present study indicates that paracetamol may cause DNA damage in V79 cells without any external metabolic activation system added.  相似文献   

16.
Summary Incorporation of thymidine into nuclear and mitochondrial DNA has been measured in the livers of normal rats and of rats killed 17 h or 24 h after partial hepatectomy. When total-body X-irradiation (500 or 1,500 R) is given at increasing intervals (up to 30 h) before sacrifice, a progressive decrease followed by a plateau of low level of incorporation is observed in the nuclear DNA (N-DNA) whereas the synthesis of mitochondrial DNA (M-DNA) first decreases until a minimal value is reached after 4 h in normal liver and 12 h in regenerating liver, then recovers at an exponential rate, quite independently of the nuclear DNA synthesis.The results suggest that irradiation can interfere with the enzymatic processes of both M-DNA and N-DNA syntheses, but that the persistence of the inhibition of N-DNA synthesis must be ascribed to a temporary block in the cell cycle.The SH-protector AET injected to non-irradiated rats exerts a very small inhibitory effect on normal liver N-DNA and M-DNA synthesis. In regenerating liver, both syntheses are affected rather similarly suggesting a common mechanism of inhibition through impairment of some step in the synthetic process.  相似文献   

17.
When a single dose of urethan was injected into the peritoneal cavity of rats immediately after partial hepatectomy, DNA synthesis was delayed by 12 h. The induction of ornithine decarboxylase which was induced biphasically following partial hepatectomy was also reduced and delayed by 14–15 h by the administration of urethan. S-Adenosylmethionine decarboxylase activity in urethan-treated rat liver at 20 h and 29 h after operation was significantly lower than that of untreated animals. This enzyme activity was shown to increase thereafter, reaching a higher level than in untreated rats at 37–42 h. Hepatic spermidine content changed biphasically in a manner similar to DNA synthesis. These results suggest that the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase may correlate with DNA synthesis and that an increase of spermidine concentration is necessary to DNA synthesis.  相似文献   

18.
Using two different cell lines growing logarithmically, it is demonstrated that inhibition of DNA synthesis by cytosine arabinoside leads to a disruption of the sequence of replication of the chromosomal DNA. After release of the inhibition, some DNA synthesis is reinitiated in DNA segments replicated earlier in that S phase, leading to double replication of some DNA segments. This was directly demonstrated by showing that, following removal of the inhibitor, DNA was synthesized off template strands which had themselves been synthesized only 1–2 h before the addition of the inhibitor.  相似文献   

19.
Actinomycin D, known for its suppression of cellular RNA synthesis and for the reduction of the rate of synthesis of double-stranded DNA by the RNA tumor virus RNA-dependent DNA polymerase, was found to interact with single-stranded DNA in such a way as to inhibit DNA . DNA and DNA . RNA hybridizations. This finding is discussed in the light of the observation that DNA elongation during DNA synthesis of RNA tumor viruses is blocked in vitro in the presence of actinomycin D. It thus supports the model that hybridization is a necessary step during RNA tumor virus DNA synthesis.  相似文献   

20.
本工作采用3HTdR掺入DNA法观察重组人肝细胞生长因子(rhHGF)刺激大鼠离体肝细胞DNA合成的剂量与时间效应。实验结果表明:rhHGF是最强的促肝细胞分裂剂,在一定剂量范围内,rhHGF与肝细胞DNA合成有明显的量效关系。1ng/mlrhHGF即可引起3HTdR掺入显著增加(P<0.01),随剂量增加,刺激DNA合成的效应也随之增强;10ng/ml时3HTdR掺入量最大,较对照组高7倍(P<0.001),剂量再增加即出现抑制效应;rhHGF刺激肝细胞DNA合成存在时间效应关系,表现为rhHGF作用24h,DNA合成量明显高于对照组(P<0.01),48h作用达最高(P<0.001),随后开始下降,至96h下降到相当于24h的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号