首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reflex regulation of sympathetic nerve activity has been demonstrated to be impaired in the chronic heart failure (CHF) state compared with the normal condition (Liu JL, Murakami H, and Zucker IH. Circ Res 82: 496-502, 1998). Exercise training (Ex) appears to be beneficial to patients with CHF and has been shown to reduce sympathetic outflow in this disease state (Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, and Schuler G. J Am Coll Cardiol 35: 706-713, 2000). We tested the hypothesis that Ex corrects the reduced cardiopulmonary (CP) reflex response to volume expansion in the CHF state. Normal, normal with Ex, CHF, and CHF with Ex (CHF-Ex) groups (n = 10-21) of male New Zealand White rabbits were studied. CHF was induced by chronic ventricular pacing. Rabbits were instrumented to record left ventricular end-diastolic pressure (LVEDP), left ventricular end-diastolic diameter (LVEDD), and renal sympathetic nerve activity (RSNA). Experiments were carried out with the animals in the conscious state. Volume expansion was performed with 6% dextran in normal saline at a rate of 5 ml/min to approximately 20% of estimated plasma volume without any significant effect on mean arterial pressure being exhibited. The relationships between RSNA and LVEDP and between RSNA and LVEDD were determined by linear regression; the slopes served as an index of CP reflex sensitivity. Normal rabbits exhibited a CP reflex sensitivity of -8.4 +/- 1.5%delta RSNA/mmHg. This value fell to 0.0 +/- 1.3%delta RSNA/mmHg in CHF rabbits (P < 0.001). Ex increased CP reflex sensitivity to -5.0 +/- 0.7%delta RSNA/mmHg in CHF-Ex rabbits (P < 0.05 compared with CHF). A similar trend was seen when related to the change in LVEDD. Furthermore, resting RSNA expressed as a percentage of maximum RSNA in response to cigarette smoke was also normalized by Ex in rabbits with CHF. Ex had no effect on these parameters in normal rabbits. These data confirm an impairment of CP reflex sensitivity and sympathoexcitation in CHF vs. normal animals. Ex substantially restored both CP reflex sensitivity and baseline RSNA in CHF animals. Thus Ex beneficially affects reflex regulation in CHF, thereby lowering resting sympathetic nerve activity.  相似文献   

2.
Previous studies showed that the cardiac sympathetic afferent reflex (CSAR) is enhanced in dogs and rats with chronic heart failure (CHF) and that central ANG II type 1 receptors (AT(1)R) are involved in this augmented reflex. The aim of this study was to determine whether intracerebroventricular administration and microinjection of antisense oligodeoxynucleotides targeted to AT(1)R mRNA would attenuate the enhanced CSAR and decrease resting renal sympathetic nerve activity (RSNA) in rats with coronary ligation-induced CHF. The CSAR was elicited by application of bradykinin to the epicardial surface of the left ventricle. Reflex responses to epicardial administration of bradykinin were enhanced in rats with CHF. The response to bradykinin was determined every 50 min after intracerebroventricular administration (lateral ventricle) or microinjection (into paraventricular nucleus) of antisense or scrambled oligonucleotides to AT(1)R mRNA. AT(1)R mRNA and protein levels in the paraventricular nucleus were significantly reduced 5 h after administration of antisense. Antisense significantly decreased resting RSNA and normalized the enhanced CSAR responses to bradykinin in rats with CHF. Scrambled oligonucleotides did not alter resting RSNA or the enhanced responses to bradykinin in rats with CHF. No significant effects were found in sham-operated rats after administration of either antisense or scrambled oligonucleotides. These results strongly suggest that central AT(1)R mRNA antisense reduces expression of AT(1)R protein and normalizes the augmentation of this excitatory sympathetic reflex and that genetic manipulation of protein expression can be used to normalize the sympathetic enhancement in CHF.  相似文献   

3.
Chronic heart failure (CHF) is well known to be associated with both an enhanced chemoreceptor reflex and an augmented cardiac "sympathetic afferent reflex" (CSAR). The augmentation of the CSAR may play an important role in the enhanced chemoreceptor reflex in the CHF state because the same central areas are involved in the sympathetic outputs of both reflexes. We determined whether chemical and electrical stimulation of the CSAR augments chemoreceptor reflex function in normal rats. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The chemoreceptor reflex was tested by unilateral intra-carotid artery bolus injection of potassium cyanide (KCN) and nicotine. We found that 1) left ventricular epicardial application of capsaicin increased the pressor responses and the RSNA responses to chemoreflex activation induced by both KCN and nicotine; 2) when the central end of the left cardiac sympathetic nerve was electrically stimulated, both the pressor and the RSNA responses to chemoreflex activation induced by KCN were increased; 3) pretreatment with intracerebroventricular injection of losartan (500 nmol) completely prevented the enhanced chemoreceptor reflex induced by electrical stimulation of the cardiac sympathetic nerve; and 4) bilateral microinjection of losartan (250 pmol) into the nucleus tractus solitarii (NTS) completely abolished the enhanced chemoreceptor reflex by epicardial application of capsaicin. These results suggest that both the chemical and electrical stimulation of the CSAR augments chemoreceptor reflex and that central ANG II, specially located in the NTS, plays a major role in these reflex interactions.  相似文献   

4.
Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.  相似文献   

5.
Chronic heart failure (CHF) is characterized by sympathoexcitation, and the cardiac sympathetic afferent reflex (CSAR) is a sympathoexcitatory reflex. Our previous studies have shown that the CSAR was enhanced in CHF. In addition, central angiotensin II (ANG II) is an important modulator of this reflex. This study was performed to determine whether the CSAR evoked by stimulation of cardiac sympathetic afferent nerves (CSAN) in rats with coronary ligation-induced CHF is enhanced by ANG II in the paraventricular nucleus (PVN). Under alpha-chloralose and urethane anesthesia, renal sympathetic nerve activity (RSNA) was recorded. The RSNA responses to electrical stimulation (5, 10, 20, and 30 Hz) of the CSAN were evaluated. Bilateral microinjection of the AT1-receptor antagonist losartan (50 nmol) into the PVN had no significant effects in the sham group, but it abolished the enhanced RSNA response to stimulation in the CHF group. Unilateral microinjection of three doses of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to stimulation. Although ANG II also potentiated the RSNA response to electrical stimulation in sham rats, the RSNA responses to stimulation after ANG II into the PVN in rats with CHF were much greater than in sham rats. The effects of ANG II were prevented by pretreatment with losartan into the PVN in CHF rats. These results suggest that the central gain of the CSAR is enhanced in rats with coronary ligation-induced CHF and that ANG II in the PVN augments the CSAR evoked by CSAN, which is mediated by the central angiotensin AT1 receptors in rats with CHF.  相似文献   

6.
Ma Y  Yang ZM  Kang YM 《生理科学进展》2008,39(2):105-108
交感神经活动增强是加重慢性心力衰竭的一个重要因素.神经解剖学证实脊髓交感节前神经元直接接受来自下丘脑室旁核和延髓头端腹外侧区神经元纤维的投射,心衰时这两个区域体液因子的改变明显影响外周交感神经放电,因此许多从事心衰研究的学者将目光转向了中枢神经系统.目前,该领域的研究尚处于起步阶段,相关研究的报道较少,但中枢肾素-血管紧张素-醛固酮系统促进交感神经活动进而加重心衰的观点被多数人所支持.本文就这些方面做一综述.  相似文献   

7.
Zhu GQ  Gao XY  Zhang F  Wang W 《生理学报》2004,56(1):47-53
为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(N0)在慢性心力衰竭(chronic heart failure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR。结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注射NO合酶(NOS)抑制剂MeTC增强对照组大鼠的CSAR但对CHF大鼠的CSAR无显著影响;(3)RVLM微量注射NO供体S-nitroso-N-acetyl-penicillamine(SNAP)抑制CHF大鼠增强的CSAR;(4)S-methyl-L-thioeitruline(MeTC)仅增强对照组大鼠基础水平的RSNA,而SNAP抑制对照组和CHF大鼠基础水平的RSNA。结果表明RVLM中内源性NO的减少是导致CHF大鼠CSAR增强的重要机制之一。  相似文献   

8.
为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(NO)在慢性心力衰竭(chronic heartfailure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR.结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注射NO合酶(NOS)抑制剂MeTC增强对照组大鼠的CSAR但对CHF大鼠的CSAR无显著影响;(3)RVLM微量注射NO供体S-nitroso-N-acetyl-penicillamine(SNAP)抑制CHF大鼠增强的CSAR;(4)S-methyl-L-thiocitmline(MeTC)仅增强对照组大鼠基础水平的RSNA,而SNAP抑制对照组和CHF大鼠基础水平的RSNA.结果表明RVLM中内源性NO的减少是导致CHF大鼠CSAR增强的重要机制之.  相似文献   

9.
Gan XB  Duan YC  Xiong XQ  Li P  Cui BP  Gao XY  Zhu GQ 《PloS one》2011,6(10):e25784

Background

Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF.

Methodology/Principal Findings

Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats.

Conclusions

The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.  相似文献   

10.
The present study aimed to determine whether peripheral and/or central chemoreflex function is altered in chronic heart failure (CHF) and whether altered chemoreflex function contributes to sympathetic activation in CHF. A rabbit model of pacing-induced CHF was employed. The development of CHF (3-4 wk of pacing) was characterized by an enlarged heart, an attenuated contractility, and an elevated central venous pressure. Renal sympathetic nerve activity (RSNA) and minute volume (MV) of ventilation in response to stimulation of peripheral chemoreceptors by isocapnic/hypoxic gases were measured in the conscious state. It was found that the baseline RSNA at normoxia was higher in CHF rabbits than in sham rabbits (35. 00 +/- 4.03 vs. 20.75 +/- 2.87% of maximum, P < 0.05). Moreover, the magnitudes of changes in RSNA and MV in response to stimulation of the peripheral chemoreceptors and the slopes of RSNA-arterial PO2 and MV-arterial PO2 curves were greater in CHF than in sham rabbits. Inhibition of the peripheral chemoreceptors by inhalation of 100% O2 decreased RSNA in CHF but not in sham rabbits. The central chemoreflex function, as evaluated by the responses of RSNA and MV to hyperoxic/hypercapnic gases, was not different between sham and CHF rabbits. These data suggest that an enhancement of the peripheral chemoreflex occurs in the rabbit model of pacing-induced CHF and that the enhanced peripheral chemoreflex function contributes to the sympathetic activation in the CHF state.  相似文献   

11.
Congestive heart failure (CHF) induces abnormal regulation of peripheral blood flow during exercise. Previous studies have suggested that a reflex from contracting muscle is disordered in this disease. However, there has been very little investigation of the muscle reflex regulating sympathetic outflows in CHF. Myocardial infarction (MI) was induced by the coronary artery ligation in rats. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. We examined renal and lumbar sympathetic nerve activities (RSNA and LSNA, respectively) during 1-min repetitive (1- to 4-s stimulation to relaxation) contraction or stretch of the triceps surae muscles. During these interventions, the RSNA and LSNA responded synchronously as tension was developed. The RSNA and LSNA responses to contraction were significantly greater in MI rats (n = 13) with FS <30% than in control animals (n = 13) with FS >40% (RSNA: +49 +/- 7 vs. +19 +/- 4 a.u., P < 0.01; LSNA: +28 +/- 7 vs. +8 +/- 2 a.u., P < 0.01) at the same tension development. Stretch also increased the RSNA and LSNA to a larger degree in MI (n = 13) than in control animals (n = 13) (RSNA: +36 +/- 6 vs. +19 +/- 3 a.u., P < 0.05; LSNA: +24 +/- 3 vs. +9 +/- 2 a.u., P < 0.01). The data demonstrate that CHF exaggerates sympathetic nerve responses to muscle contraction as well as stretch. We suggest that muscle afferent-mediated sympathetic outflows contribute to the abnormal regulation of peripheral blood flow seen during exercise in CHF.  相似文献   

12.

Background

Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H2S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H2S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF).

Methodology/Principal Findings

CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H2S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H2S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H2S level in the PVN in both sham-operated rats and CHF rats.

Conclusions

Exogenous H2S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H2S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats.  相似文献   

13.
To assess sympathetic variability in chronic heart failure (CHF), we evaluated a distribution of inter-spike intervals (ISIs) in renal sympathetic nerve activity (RSNA) in salt-sensitive hypertension-induced CHF (DSSH-CHF) rats. Dahl salt-sensitive rats were fed an 8% NaCl diet for 9 weeks to induce salt-sensitive hypertension-induced CHF. ISIs in RSNA were obtained from chronically instrumented conscious rats, and counts (frequency) and ranks of ISIs in RSNA were plotted with a histogram. We found that ISIs in RSNA followed a power-law distribution in rats, and the power-law distribution of ISIs for RSNA in DSSH-CHF rats was significantly different from that in normal rats. These results indicated that sympathetic variability may be significantly different between salt-sensitive hypertension-induced CHF and healthy individuals, which suggests that sympathetic variability may be used to predict abnormality of the sympathetic regulatory system.  相似文献   

14.
Neurohumoral stimulation comprising both autonomic-nervous-system dysfunction and activation of hormonal systems including the renin-angiotensin-aldosterone system (RAAS) was found to be associated with Type-2-diabetes (T2D). Therapeutic strategies such as RAAS interference proved to be beneficial in both T2D treatment and prevention. In addition to an activated RAAS, hyperleptinemia in obesity, hyperinsulinemia in conditions of peripheral insulin resistance and overall oxidative stress in T2D represent known activators of the sympathetic component of the autonomic nervous system. Here, we hypothesize that sympathetic activation may cause peripheral insulin resistance defined as partial blocking of insulin effects on glucose uptake. Resulting hyperinsulinemia or hyperglycemia-related oxidative stress may further aggravate sympatho-excitation. This notion leads to a secondary hypothesis: sympathetic activation worsens from obesity towards insulin resistance, and further towards T2D. In this review, existing evidence relating to neurohumoral stimulation in T2D and consequences thereof, such as oxidative stress and inflammation, are discussed. The aim of this review is to provide a rationale for therapies, which are able to intercept neuroendocrine pathways in T2D and precursor states such as obesity.  相似文献   

15.
An enhancement of peripheral chemoreflex sensitivity contributes to sympathetic hyperactivity in chronic heart failure (CHF) rabbits. The enhanced chemoreflex function in CHF involves augmented carotid body (CB) chemoreceptor activity via upregulation of the angiotensin II (ANG II) type 1 (AT(1))-receptor pathway and downregulation of the neuronal nitric oxide synthase (nNOS)-nitric oxide (NO) pathway in the CB. Here we investigated whether exercise training (EXT) normalizes the enhanced peripheral chemoreflex function in CHF rabbits and possible mechanisms mediating this effect. EXT partially, but not fully, normalized the exaggerated baseline renal sympathetic nerve activity (RSNA) and the response of RSNA to hypoxia in CHF rabbits. EXT also decreased the baseline CB nerve single-fiber discharge (4.9 +/- 0.4 vs. 7.7 +/- 0.4 imp/s at Po(2) = 103 +/- 2.3 Torr) and the response to hypoxia (20.6 +/- 1.1 vs. 36.3 +/- 1.3 imp/s at Po(2) = 41 +/- 2.2 Torr) from CB chemoreceptors in CHF rabbits, which could be reversed by treatment of the CB with ANG II or a nNOS inhibitor. Our results also showed that NO concentration and protein expression of nNOS were increased in the CBs from EXT + CHF rabbits, compared with that in CHF rabbits. On the other hand, elevated ANG II concentration and AT(1)-receptor overexpression of the CBs in CHF state were blunted by EXT. These results indicate that EXT normalizes the CB chemoreflex in CHF by preventing an increase in afferent CB chemoreceptor activity. EXT reverses the alterations in the nNOS-NO and ANG II-AT(1)-receptor pathways in the CB responsible for chemoreceptor sensitization in CHF.  相似文献   

16.

Background and Aim

Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure (CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats.

Methodology/Principal Findings

Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger) in Sham and CHF rats.

Conclusion

IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.  相似文献   

17.
心力衰竭状态下的动脉压力感受器反射   总被引:3,自引:0,他引:3  
Wang W  Zhu GQ  Gao L  Tan W  Qian ZM 《生理学报》2004,56(3):269-281
心力衰竭是以心脏泵血功能降低(心输出量减少)为始动因素的临床综合征。心输出量降低首先引起动脉压力感受性反射失负荷,进而通过迷走-交感机制加快心率;同时,支配血管床的交感传出活动增强,进而增加总外周阻力。本文主要论述在心力衰竭状态下压力感受性反射在循环功能异常调控中的作用机制。本综述及我们近年的研究表明:(1)在心力衰竭状态下压力感受性反射功能明显减弱;(2)中枢血管紧张素Ⅱ和活性氧在压力感受性反射功能失调中发挥关键作用;(3)心交感传入刺激和化学感受性反射能抑制压力感受性反射;(4)适当的运动可以部分纠正异常的心血管反射活动。  相似文献   

18.
Angiotensin (ANG)-converting enzyme (ACE)2 in brain regions such as the paraventricular nucleus (PVN) controlling cardiovascular function may be involved in the regulation of sympathetic outflow in chronic heart failure (CHF). The purpose of this study was to determine if ACE2 plays a role in the central regulation of sympathetic outflow by regulating neuronal nitric oxide (NO) synthase (nNOS) in the PVN. We investigated ACE2 and nNOS expression within the PVN of rats with CHF. We then determined the effects of ACE2 gene transfer in the PVN on the contribution of NO-mediated sympathoinhibition in rats with CHF. The results showed that there were decreased expressions for ACE2, the ANG-(1-7) receptor, and nNOS within the PVN of rats with CHF. After the application of adenovirus vectors encoding ACE2 (AdACE2) into the PVN, the increased expression of ACE2 in the PVN was confirmed by Western blot analysis. AdACE2 transfection significantly increased nNOS protein levels (change of 50 ± 5%) in the PVN of CHF rats. In anesthetized rats, AdACE2 treatment attenuated the responses of renal sympathetic nerve activity (RSNA), mean arterial pressure, and heart rate to the NOS inhibitor N-monomethyl-L-arginine in rats with CHF (RSNA: 28 ± 3% vs. 16 ± 3%, P < 0.05) compared with CHF + AdEGFP group. Furthermore, neuronal NG-108 cells incubated with increasing doses of AdACE2 showed a dose-dependent increase in nNOS protein expression (60% at the highest dose). Taken together, our data highlight the importance of increased expression and subsequent interaction of ACE2 and nNOS within the PVN, leading to a reduction in sympathetic outflow in the CHF condition.  相似文献   

19.
Endothelin-1 (ET-1) is elevated in chronic heart failure (CHF). In this study, we determined the effects of chronic ET-1 blockade on renal sympathetic nerve activity (RSNA) in conscious rabbits with pacing-induced CHF. Rabbits were chronically paced at 320--340 beats/min for 3--4 wk until clinical and hemodynamic signs of CHF were present. Resting RSNA and arterial baroreflex control of RSNA were determined. Responses were determined before and after the ET-1 antagonist L-754,142 (a combined ET(A) and ET(B) receptor antagonist, n = 5) was administered by osmotic minipump infusion (0.5 mg. kg(-1) x h(-1) for 48 h). In addition, five rabbits with CHF were treated with the specific ET(A) receptor antagonist BQ-123. Baseline RSNA (expressed as a percentage of the maximum nerve activity during sodium nitroprusside infusion) was significantly higher (58.3 +/- 4.9 vs. 27.0 +/- 1.0, P < 0.001), whereas baroreflex sensitivity was significantly lower in rabbits with CHF compared with control (3.09 +/- 0.19 vs. 6.04 +/- 0.73, P < 0.001). L-754,142 caused a time-dependent reduction in arterial pressure and RSNA in rabbits with CHF. In addition, BQ-123 caused a reduction in resting RSNA. For both compounds, RSNA returned to near control levels 24 h after removal of the minipump. These data suggest that ET-1 contributes to sympathoexcitation in the CHF state. Enhancement of arterial baroreflex sensitivity may further contribute to sympathoinhibition after ET-1 blockade in heart failure.  相似文献   

20.
Exercise training (EX) has become an important modality capable of enhancing the quality of life and survival of patients with chronic heart failure (CHF). Although 4 wk of EX in animals with CHF evoked a reduction in renal sympathetic nerve activity and ANG II plasma levels and an enhancement in baroreflex sensitivity at rest (Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH, Circulation 102: 1854-1862, 2000; Liu JL, Kulakofsky J, Zucker IH, J Appl Physiol 92: 2403-2408, 2002), it is unclear whether these phenomena are causally related. CHF was induced in rabbits by ventricular pacing (360-380 beats/min) for 3 wk. CHF rabbits were EX for 4 wk at 15-18 m/min, 6 days/wk, 30-40 min/day. Three groups of rabbits were studied: CHF (with no EX), CHF-EX, and CHF-EX + ANG II infusion [in which ANG II levels were kept at or near levels observed in CHF (non-EX) rabbits by subcutaneous osmotic minipump infusion]. EX prevented the increase in plasma ANG II levels shown in CHF rabbits. CHF and CHF-EX + ANG II infusion rabbits had significantly depressed baroreflex sensitivity slopes (P < 0.01 for sodium nitroprusside and P < 0.001 for phenylephrine) and higher baseline renal sympathetic nerve activities than CHF-EX animals. EX downregulated mRNA and protein expression of ANG II type 1 receptors in the rostral ventrolateral medulla in CHF rabbits. This was prevented by ANG II infusion. These data are consistent with the view that the reduction in sympathetic nerve activity and the improvement in baroreflex function in CHF after EX are due to the concomitant reduction in ANG II and angiotensin receptors in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号