首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of esculetin (6,7-dihydroxycoumarin) and its glycoside, esculin, on 8-oxo-2'-deoxyguanosine (8-oxodG) formation and carcinogenesis induced by a chemical carcinogen, N-nitrosobis(2-oxopropyl)amine (BOP), were examined in the pancreas of female Syrian golden hamsters. Animals were administered esculetin by gastric intubation into the stomach 30 min before BOP administration or ingestion of a diet containing esculin for 7 days before BOP administration, and killed 1 or 4 h after BOP treatment, and the contents of thiobarbituric acid-reacting substrates (TBARS) and 8-oxodG in the pancreas were determined. Both compounds suppressed significantly the BOP-induced increases in 8-oxodG and TBARS contents in hamster pancreas. We further investigated the effect of esculin on pancreatic carcinogenesis by the rapid production model induced by augmentation pressure with a choline-deficient diet, ethionine, methionine and BOP. Esculin was given ad libitum as a 0.05% aqueous solution in either the initiation or promotion phases. The incidence of invasive tumors in animals given esculin during the initiation phase was significantly smaller than in the control group, while esculin given during the promotion phase showed no apparent effects. These results suggest that the intake of esculin has an inhibitory effect on BOP-induced oxidative DNA damage and carcinogenesis in hamster pancreas.  相似文献   

2.
The effects of esculin, a natural coumarin compound, on the formation of 8-oxo-2'-deoxyguanosine (8-oxodG) and carcinogenesis induced by a chemical carcinogen, N-nitrosobis(2-oxopropyl)amine (BOP), were examined in the pancreas of female Syrian golden hamsters. Animals were given a diet containing esculin for 7 days, and killed 4~h after BOP treatment, and the contents of 8-oxodG were measured in the nuclear DNA of the pancreas. Esculin suppressed significantly the increase in the 8-oxodG content of hamster pancreas induced by BOP. Furthermore, the effect of esculin on the rapid production model experiment for pancreatic carcinogenesis using BOP was investigated. Esculin was given ad libitum as a 0.05% aqueous solution during either the initiation or promotion phases. The incidence of invasive tumors in animals given esculin during the initiation phase was significantly lower than in the control group, while the incidence in animals given esculin during the promotion phase showed no significant change. These results suggest that the intake of esculin has an inhibitory effect on BOP-induced oxidative DNA damage and carcinogenesis in hamster pancreas.  相似文献   

3.
Effects of esculetin (6,7-dihydroxycoumarin) and its glycoside, esculin, on 8-oxo-2′-deoxyguanosine (8-oxodG) formation and carcinogenesis induced by a chemical carcinogen, N-nitrosobis(2-oxopropyl)amine (BOP), were examined in the pancreas of female Syrian golden hamsters. Animals were administered esculetin by gastric intubation into the stomach 30?min before BOP administration or ingestion of a diet containing esculin for 7 days before BOP administration, and killed 1 or 4?h after BOP treatment, and the contents of thiobarbituric acid-reacting substrates (TBARS) and 8-oxodG in the pancreas were determined. Both compounds suppressed significantly the BOP-induced increases in 8-oxodG and TBARS contents in hamster pancreas. We further investigated the effect of esculin on pancreatic carcinogenesis by the rapid production model induced by augmentation pressure with a choline-deficient diet, ethionine, methionine and BOP. Esculin was given ad libitum as a 0.05% aqueous solution in either the initiation or promotion phases. The incidence of invasive tumors in animals given esculin during the initiation phase was significantly smaller than in the control group, while esculin given during the promotion phase showed no apparent effects. These results suggest that the intake of esculin has an inhibitory effect on BOP-induced oxidative DNA damage and carcinogenesis in hamster pancreas.  相似文献   

4.
N-Nitrosobis(2-oxopropyl)amine (BOP) and N-nitroso(2-hydroxypropyl)(2-oxypropyl)amine (HPOP) induce pancreatic tumors in the Syrian hamster. BOP and HPOP target the kidneys, esophagus and upper respiratory system in rats, but the pancreas of this species is resistant to the above carcinogens. On the other hand, N-nitrosodimethylamine (DMN) induces hepatic and kidney tumors in the rat, and tumors of the liver and upper respiratory system in the hamster, but it is not known to affect the pancreas of either species. At equimolar doses, ratios of DMN versus BOP or HPOP mediated methylation in hamster liver DNA are 1.6 and 8.1, respectively. Respective ratios in the rat liver are 1.1 and 6.5. However, in both species equitoxic doses of BOP, HPOP and DMN induce similar levels of N7-methylguanine (N7-MeG) in hepatic DNA. At such doses methylation of kidney DNA is 24 and 14 times more extensive in BOP and HPOP than in DMN-treated hamsters. Similarly, ratios of N7-MeG in the pancreas of BOP and HPOP vs. DMN-treated hamsters are 10 and 5, respectively, while in the lung this ratio is 2.2 for both carcinogens. Levels of O6-methylguanine (O6-MeG) in the DNA of extrahepatic tissues are substantially greater in hamsters treated with BOP or HPOP than in those treated with an equitoxic dose of DMN. In rats, equitoxic doses of BOP and DMN induce similar levels of N7-MeG and O6-MeG in hepatic, kidney and lung DNA. However, levels of these adducts in pancreatic DNA are 2 times greater following BOP than DMN administration. Ratios of N7-MeG in pancreas, lung and kidney in HPOP vs. DMN-treated rats are 2.1, 2.7 and 2.1, respectively. Repair of O6-MeG is more effective in rat than in hamster liver, however in other tissues this is not always the case. Levels of O6-MeG in the pancreas of rats are reduced to half of their initial value between 40 and 50 h following the administration of 10, 50 or 20 mg/kg DMN, HPOP or BOP, respectively. However, half-lives for the repair of O6-MeG in hamster pancreas are 28, 62 and greater than 120 h at the respective doses of the above carcinogens. Since the above doses of DMN, HPOP and BOP induce 7, 19 and 41 nmol O6-MeG/mmol of guanine respectively in the hamster pancreas, it is suggested that the rate of repair could be a function of the initial concentration of this adduct. Differences between DMN and BOP or HPOP in methylating pancreatic DNA are sufficient to distinguish the latter two nitrosamines as pancreatic carcinogens for the hamster.  相似文献   

5.
There is an age-associated decline in the mitochondrial function of the Wistar rat heart. Previous reports from this lab have shown a decrease in mitochondrial cytochrome c oxidase (COX) activity associated with a reduction in COX gene and protein expression and a similar decrease in the rate of mitochondrial protein synthesis. Damage to mitochondrial DNA may contribute to this decline.

Using the HPLC-Coularray system (ESA, USA), we measured levels of nuclear and mitochondrial 8-oxo-2'-deoxyguanosine (8-oxodG) from 6-month (young) and 23-month-old (senescent) rat liver DNA. We measured the sensitivity of the technique by damaging calf thymus DNA with photoactivated methylene blue for 30s up to 2h. The levels of damage were linear over the entire time course including the shorter times which showed levels comparable to those expected in liver. For the liver data, 8-oxodG was reported as a fraction of 2-deoxyguanosine (2-dG). There was no change in the levels of 8-oxodG levels in the nuclear DNA from 6 to 23-months of age. However, the levels of 8-oxodG increased 2.5-fold in the mitochondrial DNA with age. At 6 months, the level of 8-oxodG in mtDNA was 5-fold higher than nuclear and increased to approximately 12-fold higher by 23 months of age. These findings agree with other reports showing an age-associated increase in levels of mtDNA damage; however, the degree to which it increases is smaller. Such damage to the mitochondrial DNA may contribute to the age-associated decline in mitochondrial function.  相似文献   

6.
N-Nitrosobis(2-oxopropyl)amine (BOP), N-nitrosobis(2-hydroxypropyl)-amine (BHP) and N-nitroso(2-hydroxypropyl-2-oxopropyl)amine (HPOP) are pancreatic carcinogens in the Syrian golden hamster (SGH) but do not cause pancreatic tumors in rats. In this study, the ability of these three compounds to induce DNA damage in isolated pancreas cells from both species was determined by alkaline elution analysis. BOP was highly potent in SGH cells, causing DNA damage at concentrations as low as 0.5 micrograms/ml, and HPOP, although less potent than BOP, also caused considerable damage. Isolated SGH pancreas cells are thus able to metabolize BOP and HPOP to DNA-damaging species. Of the three compounds tested, only HPOP at higher doses (25-100 micrograms/ml) induced DNA damage in isolated rat pancreas cells. BHP did not damage rat or SGH pancreas cell DNA at concentrations up to 100 micrograms/ml, apparently due to lack of uptake of this compound by the cells. The observed insensitivity to DNA damage in rat cells is consistent with the resistance of the rat pancreas to carcinogenesis by these three compounds. The sensitivity of SGH pancreas cells to BOP- and HPOP-induced DNA damage correlates with the high carcinogenicity of these compounds for the SGH pancreas.  相似文献   

7.
8-oxo-deoxyguanosine (8-oxodG) is one of the major DNA lesions formed upon oxidative attack of DNA. It is a mutagenic adduct that has been associated with pathological states such as cancer and aging. Base excision repair (BER) is the main pathway for the repair of 8-oxodG. There is a great deal of interest in the question about age-associated accumulation of this DNA lesion and its intracellular distribution, particularly with respect to mitochondrial or nuclear localization. We have previously shown that 8-oxodG-incision activity increases with age in rat mitochondria obtained from both liver and heart. In this study, we have investigated the age-associated changes in DNA repair activities in both mitochondrial and nuclear extracts obtained from mouse liver. We observed that 8-oxodG incision activity of mitochondrial extracts increases significantly with age, from 13.4 + or - 2.2 fmoles of oligomer/100 microg of protein/16 h at 6 to 18.6 + or - 4.9 at 14 and 23.7 + or - 3.8 at 23 months of age. In contrast, the nuclear 8-oxodG incision activity showed no significant change with age, and in fact slightly decreased from 11.8 + or - 3 fmoles/50 microg of protein/2 h at 6 months to 9.7 + or - 0.8 at 14 months. Uracil DNA glycosylase and endonuclease G activities did not change with age in nucleus or mitochondria. Our results show that the repair of 8-oxodG is regulated differently in nucleus and mitochondria during the aging process. The specific increase in 8-oxodG-incision activity in mitochondria, rather than a general up-regulation of DNA metabolizing enzymes in those organelles, suggests that this pathway may be up regulated during aging in mice.  相似文献   

8.
Riis B  Risom L  Loft S  Poulsen HE 《DNA Repair》2002,1(9):709-717
This study was set up to investigate the relationships between the formation and removal of DNA damage in form of 8-oxodeoxyguanosine (8-oxodG) in neonatal (day 16 of gestation) as compared to adult rats. The hypothesis addressed was whether the rapidly dividing foetal tissue has an enhanced requirement of DNA repair providing protection against potentially mutagenic DNA damages such as 8-oxodG. The activity of the primary 8-oxodG-repair protein OGG1 was measured by a DNA incision assay and the expression of OGG1 mRNA was measured by Real-Time PCR normalised to 18S rRNA. The tissue level of 8-oxodG was measured by HPLC-ECD. We found a 2-3-fold increased incision activity in the foetal control tissue, together with a 3-15-fold increase in mRNA of OGG1 as compared to liver tissue from adult rats. The levels of 8-oxodG in the foetal tissue were unaltered as compared to the adult groups. To increase the levels of 8-oxodG, the rats received an injection (i.p.) of the hepatotoxin 2-nitropropane. The compound induced significant levels of 8-oxodG in male rat livers 5h after the injection and in the foetuses 24h after the injection, while the female rats showed no increase in 8-oxodG. The incision activity was slightly depressed in both male and female liver tissue and in the foetal tissue 5h after the injection, but significantly increased from 5 to 24h after the injection. However, it did not reach levels significantly above the control levels.In conclusion, this study confirms that foetal tissue has increased levels of OGG1 mRNA and correspondingly an enhanced incision activity on an 8-oxodG substrate in a crude tissue extract.  相似文献   

9.
Mice were grouped to receive vehicle, dexamethasone (DEX), lipopolysaccharide (LPS), benzene (BZ, 200 mg/kg) and combinations: LPS + DEX, BZ + DEX, LPS + BZ, LPS + DEX + BZ. The DNA damage in bone marrow cells from BZ group was enhanced 2.8-fold measured by nuclear 8-hydroxy-2 '-deoxyguanosine (8-oxodG) and 1.4-fold measured by Comet score (index of DNA breaks) (p < 0.05). In the BZ + DEX group, 8-oxodG level and the Comet score were lowered to 65% and 76% respectively of that in the BZ group (p < 0.05). The BZ + LPS caused a 3.9-fold increase in 8-oxodG and a 1.6-fold increase in the Comet score (p < 0.05). The LPS + DEX + BZ lowered 8-oxodG level and the Comet score to 50% and 78% of the values in the LPS + BZ group, respectively (p < 0.05). Nitrate/nitrite levels in serum were higher after BZ + LPS treatment than after all other treatments. Both 8-oxodG level and the Comet scores were correlated to the serum nitrate/nitrite level across all the treatments (r = 0.55, p < 0.01 and r = 0.69, p < 0.01, respectively). In bone marrow cells the 8-oxodG correlated with the Comet scores (r = 0.80, p < 0.01). We conclude that DEX administration can reduce the DNA damage from BZ treatment and from the combination of BZ and LPS. The correlation of DNA damage with nitrate/nitrite indicates the possible involvement of reactive nitrogen species (RNS) in the interaction between BZ and the inflammatory reaction stimulated by LPS. The 8-oxodG determination is more sensitive than strand break analysis by the Comet assay in bone marrow in vivo in mice for measuring the BZ-induced DNA damage.  相似文献   

10.
Increased production of reactive oxygen species under diabetic condition underlines the higher oxidatively damaged DNA in different tissues. However, it is practically difficult to assess the oxidatively damaged DNA in different internal organs. Therefore, the present study was aimed to evaluate the extent of oxidative stress-induced DNA damage in different organs with the progression of diabetes. Diabetic and control Sprague Dawley rats were sacrificed in time-dependent manner and the lung, liver, heart, aorta, kidney, pancreas and peripheral blood lymphocytes (PBL) were analyzed for both alkaline and modified comet assay with endonuclease-III (Endo III) and formamidopyrimidine-DNA glycosylase (FPG) (hereafter called modified comet assay) for the detection of oxidative DNA damage. The statistically significant increase in olive tail moment (OTM) was found in all the tested tissues. The extent of DNA damage was increased with the progression of diabetes as revealed by the parameter of OTM in alkaline and modified comet assay. Further, the positive correlations were observed between OTM of the lung, liver, heart, aorta, kidney and pancreas with PBL of diabetic rat in the alkaline and modified comet assay. Moreover, significant increase in the 8-oxodG positive nuclei in the lung, liver, heart, aorta, kidney and pancreas was observed in 4th and 8th week diabetic rat as compared to control. Results of the present study clearly indicated the suitability of alkaline and modified comet assay for the detection of multi-organ oxidative DNA damage in streptozotocin (STZ)-induced diabetic rat and showed that damaged DNA of PBL can be used as a suitable biomarker to assess the internal organs response to DNA damage in diabetes.  相似文献   

11.
The 8-oxodG content has been measured in chromosomal DNA of gilthead seabream (Sparus aurata) by HPLC-EC. Susceptibility of different tissues to oxidative DNA damage was studied by exposing fish to model pollutants. Cu(II), paraquat (PQ) and malathion failed to promote DNA oxidation in liver, while dieldrin significantly increased the 8-oxodG content in this organ, but not in gills or blood. After PQ exposure, fish liver showed high levels of glucose-6-P dehydrogenase (G-6PDH) and GSSG reductase activities. The increased antioxidant status and the lack of a specific transport system could explain the lack of susceptibility of liver to DNA oxidative damage induced by PQ. Increased levels of 8-oxodG were detected in the gills of PQ-exposed fish after 8 and 24 h. In contrast, after 48 h exposed fish contained lower 8-oxodG levels than controls. The existence of a PQ transport system in this O2-rich organ and the lack of a significant increase in antioxidant defenses would explain the sensitivity of gills to DNA damage promoted by PQ. Elimination of this soluble chemical and the putative induction of DNA-repair enzymes specific for oxidative damages could explain the drop of 8-oxodG levels at longer times. Fish exposed to moderate levels of urban and industrial pollution showed significantly high 8-oxodG content in hepatic DNA. We conclude that 8-oxodG determination in chromosomal DNA by HPLC-EC is a potentially useful biomarker of environmental pollution, although its response is still somewhat lower than that of other well-established biomarkers of oxidative stress.  相似文献   

12.
Iron-induced oxidative DNA damage in rat sperm cells in vivo and in vitro   总被引:3,自引:0,他引:3  
We investigated whether acute iron intoxication causes oxidative DNA damage, measured in terms of 7-hydro-8-oxo-2'-deoxyguanosine, 8-oxodG, in nuclear DNA in testes and epididymal sperm cells in vivo and in vitro in rats. In addition, we investigated levels of the modified nucleoside in liver and kidney and measured its urinary excretion. Sperm cells were isolated from the epididymides and the testes cells were isolated after homogenisation. In vitro, the sperm and testes cells were incubated with increasing concentrations of FeCl2 ranging from 0 to 600 microM. The median (range) levels of 8-oxodG/10(5) dG in the epididymal sperm cells increased from 0.48 (0.42-0.90) to 15.1 (11.4-17.6) (p < 0.05), whereas the level rose from 0.63 (0.22-0.81) to 8.8 (4.5-11.6) (p < 0.05) at 0 and 600 microM, respectively, in the testicular cells. In vivo groups of 7-8 rats received 0, 200 or 400 mg iron/kg as dextran i.p. After 24 h, epididymal sperm cells, testes, kidneys and liver were collected for analysis. Kidney and sperm DNA showed a significant increase in 8-oxodG in the iron-treated animals. The median (range) values of the 8-oxodG/10(5) dG in the epididymal sperm cells rose from 0.66 (0.38-1.09) to 1.12 (0.84-5.88) (p < 0.05) at 0 and 400 mg iron/kg, respectively, whereas the values in the testes and liver showed no significant change. In the kidneys the 8-oxodG/10(5) dG median (range) values were 0.98 (0.73-1.24), 1.21 (1.13-1.69) and 1.34 (1.12-1.66) after 0, 200 and 400 mg iron/kg, respectively (p < 0.05). The 8-oxodG-excretion rate was measured in 24h urine before and after iron treatment. The rate of urinary 8-oxodG excretion increased from 129 (104-179) pmol/24 h before treatment to 147 (110-239) pmol/24 h after treatment in the group receiving 400 mg iron/kg (p < 0.05). The results indicate that acute iron intoxication may increase oxidative damage to sperm and kidney DNA.  相似文献   

13.
The role of dietary fats and energy in carcinogenesis has been partly related to oxidative damage to DNA. We have investigated the effect of dietary fat content and saturation on the urinary excretion of 8-oxo-7,8dihydro-2'-deoxyguanosine (8-oxodG) in male and female rats. Groups of Fischer F344 rats (n = 6-10) were fed control chow (3.4% fat) or diets containing 21.8% corn oil or 19.8% coconut oil + 2% corn oil for 12-15 weeks. At the end of the diet intervention period 24h urine was collected for determination of 8-oxodG by HPLC. In the male groups fed control, corn oil and coconut oil diet the excretion of 8-oxodG was 403+/-150, 932+/-198 and 954+/-367pmol/kg 24 h, respectively (p < 0.05). In the female groups fed control and corn oil diet the excretion of 8-oxodG was 752+/-80 and 2206+/-282 pmol/kg 24 h, respectively (p < 0.05). Calculated per whole animal the excretion was 137+/-51, 324+/-70 and 328+/-128 pmol/24 h in the control, corn and coconut oil male groups and 156+/-21 and 464+/-56 pmol/24 h in the control and corn oil female groups, respectively ( p < 0.05). Thus, per animal or per consumed energy there was much less difference in 8-oxodG excretion between the corresponding male and female groups and only significant difference between the high fat groups. There was a close correlation (r = 0.7; p < 0.05) between 8-oxodG excretion and the energy intake. The present study suggests that a high fat diet increases oxidative DNA modification substantially irrespective of the saturation level of the fat. Energy intake appears to be the major determinant of the rate of modification.  相似文献   

14.
The short- and long-term effects of the administration of the pancreas carcinogen N-nitrosobis(2-oxopropyl)amine (BOP) on pancreatic exocrine secretion were examined in Syrian hamsters with and without stimulation by secretin and pancreozymin. Protein concentration, flow rate, pH and ion content, (Na+, K+, Ca2+, Mg2+, HCO3-, Cl-, HPO4(2-) and SO4(2-)) were measured. An immediate effect of BOP is the stimulation of flow rate in females and of protein secretion in both sexes. Multiple doses of BOP significantly altered the parameters mentioned in Section 2 only in the later stages of tumorigenesis. When these animals were stimulated with secretin or pancreozymin large decreases in flow rate and protein content of secretions were observed as early as 8 weeks after BOP treatment. Insulin-like immunoreactivity and growth hormone-like immunoreactivity were detected in collected pancreatic secretions.  相似文献   

15.
Translesion synthesis (TLS) with specialized DNA polymerases allows dealing with a base lesion on the template strand during DNA replication; a base is inserted opposite the lesion, correctly or incorrectly, depending on the lesion, the involved DNA polymerase(s) and the sequence context. The major oxidized DNA base 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) is highly mutagenic due to its ability to pair with either cytosine or adenine during DNA synthesis, depending on its conformation and involved DNA polymerases. To measure the correct or mutagenic outcome of lesion bypass, an original quantitative pyrosequencing method was developed and analytically validated. The method was applied to the study of DNA synthesis fidelity through an 8-oxodG or an undamaged guanine. After an in vitro primer-extension through 8-oxodG in the presence of the four deoxynucleotides triphosphates and a total nuclear protein extract, obtained from normal human intestinal epithelial cells (FHs 74 Int cell line), the reaction products were amplified by polymerase chain reaction and analyzed by pyrosequencing to measure nucleotides inserted opposite the lesion. The 8-oxodG bypass fidelity of FHs 74 Int cells nuclear extract is about 85.3%. We calculated within-day and total precisions for both 8-oxodG (2.8% and 2.8%, respectively) and undamaged templates (1.0% and 1.1%, respectively). We also demonstrated that only cytosine is incorporated opposite a normal guanine and that both cytosine and adenine can be incorporated opposite an 8-oxodG lesion. The proposed method is straightforward, fast, reproducible and easily adaptable to other sequences and lesions. It thus has a wide range of applications in the biological field, notably to elucidate TLS mechanisms and modulators.  相似文献   

16.
Accumulation of high levels of mutagenic oxidative mitochondrial DNA (mtDNA) lesions like 8-oxodeoxyguanine (8-oxodG) is thought to be involved in the development of mitochondrial dysfunction in aging and in disorders associated with aging. Mice null for oxoguanine DNA glycosylase (OGG1) are deficient in 8-oxodG removal and accumulate 8-oxodG in mtDNA to levels 20-fold higher than in wild-type mice (N.C. Souza-Pinto et al., 2001, Cancer Res. 61, 5378-5381). We have used these animals to investigate the effects on mitochondrial function of accumulating this particular oxidative base modification. Despite the presence of high levels of 8-oxodG, mitochondria isolated from livers and hearts of Ogg1-/- mice were functionally normal. No differences were detected in maximal (chemically uncoupled) respiration rates, ADP phosphorylating respiration rates, or nonphosphorylating rates with glutamate/malate or with succinate/rotenone. Similarly, maximal activities of respiratory complexes I and IV from liver and heart were not different between wild-type and Ogg1-/- mice. In addition, there was no indication of increased oxidative stress in mitochondria from Ogg1-/- mice, as measured by mitochondrial protein carbonyl content. We conclude, therefore, that highly elevated levels of 8-oxodG in mtDNA do not cause mitochondrial respiratory dysfunction in mice.  相似文献   

17.
Intake of green tea catechin (GTC) for 4 weeks was found to elevate vitamin E level in the mucosa of the rat large intestine. Iron-induced lipid peroxidation of the mucosal homogenate was suppressed by intake of GTC in rats fed monounsaturated fatty acid (MUFA), indicating that the protective effect of dietary GTC on mucosal oxidative stress is enhanced by combination with a MUFA-rich diet.  相似文献   

18.
Intake of green tea catechin (GTC) for 4 weeks was found to elevate vitamin E level in the mucosa of the rat large intestine. Iron-induced lipid peroxidation of the mucosal homogenate was suppressed by intake of GTC in rats fed monounsaturated fatty acid (MUFA), indicating that the protective effect of dietary GTC on mucosal oxidative stress is enhanced by combination with a MUFA-rich diet.  相似文献   

19.
DNA damage was estimated in the liver, pancreas and salivary gland of Syrian hamsters given N-nitrosobis(2-oxopropyl)amine (BOP) by alkaline sucrose gradient centrifugation. A single BOP dose (10 mg/kg) produced in all 3 tissues extensive DNA damage that was largely repaired in the salivary gland by 4 weeks, while in the liver and pancreas, some DNA damage persisted until 4 weeks. When higher BOP doses (20 and 40 mg/kg) were used, considerable DNA damage was still evident in the pancreas, but not in the liver at 6 weeks. Greater damage persisted in hamsters given 40 mg/kg, compared with those administered 20 mg/kg.  相似文献   

20.
Cappelli E  Degan P  Thompson LH  Frosina G 《Biochemistry》2000,39(34):10408-10412
The repair of the endogenous lesion 8-oxo-7,8-dihydrodeoxyguanosine (8-oxodG) was investigated in the nucleotide excision repair mutant xeroderma pigmentosum D (XPD), using human normal or transformed XPD fibroblasts and the Chinese hamster XPD cell line UV5. In vivo repair of 8-oxodG induced by hydrogen peroxide treatment and analyzed by high-performance liquid chromatography/electrochemical detection was normal in the XPD mutant fibroblasts XP15PV and GM434, as compared to normal human fibroblasts GM970, GM5757, and GM6114. Similar results were obtained with the human SV40-transformed XPD mutant cell line GM8207 in comparison to the control cell line GM637. Repair of 8-oxodG was even slightly (2-3-fold) but reproducibly increased in Chinese hamster XPD mutant UV5 cells, as compared to parental AA8 cells. This unexpected effect was reversed by transfection in UV5 cells of a wild-type XPD cDNA and confirmed in in vitro experiments in which a plasmid substrate containing a single 8-oxoG was repaired by UV5 cell extracts. The data show that repair of 8-oxodG is normal in XPD cells, thus indicating that the neurological complications of XPD patients may not be linked to in vivo accumulation of this lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号